Hội thảo Quốc tế về Thống kê Du lịch do Liên Hợp Quốc (UN) tổ chức vào cuối tháng 6, 2017 tại Manilla, Phillippines đã nhấn mạnh tới cách các thành phố sử dụng công nghệ Dữ liệu lớn (Big Data) để quản lý du lịch tốt hơn.
Hội thảo Quốc tế về Thống kê Du lịch do Liên Hợp Quốc (UN) tổ chức vào cuối tháng 6, 2017 tại Manilla, Phillippines đã nhấn mạnh tới cách các thành phố sử dụng công nghệ Dữ liệu lớn (Big Data) để quản lý du lịch tốt hơn.
Chủ đề về Big Data tác động đến social media marketing (tiếp thị qua mạng xã hội), mà cung cấp đến các bạn sẽ được chia thành 2 phần
Xem thêm: SỰ “BÙNG NỔ” CỦA SOCIAL MEDIA VÀ XU HƯỚNG MARKETING MỚI
Hàng ngày, chúng ta thường xuyên kết nối thông qua điện thoại, máy tính bảng, bảng điều khiển trò chơi và hầu hết các ứng dụng, các kênh kết nối đều được thực hiện qua các thiết bị này.Khi di chuyển giữa các thiết bị và kênh, họ đang tạo ra nhiều điểm tiếp xúc, kết nối giữa các thiết bị khác nhau mà không hề hay biết.
Xem thêm: BIG DATA Là Chìa Khóa Thành Công Của Marketing Thời Đại Số
Quay trở lại với chủ đề về Decision trees, thì ở 2 bài viết trước đã giới thiệu đến các bạn khái quát thế nào là thuật toán cây quyết định, bao gồm các thành phần, và một số công thức tính toán để lựa chọn các biến phân nhánh hay cách phân nhánh tối ưu, mục đích dự báo, phân loại, phân nhóm các đối tượng dữ liệu vào các nhóm, các lớp của biến mục tiêu sao cho chính xác nhất.
Đây là một trong những lĩnh vực sử dụng Big data công khai và lớn nhất hiện nay. Big data được sử dụng để hiểu rõ hơn về khách hàng cũng như hành vi và sở thích của họ. Các công ty rất muốn mở rộng bộ dữ liệu truyền thông của họ, dữ liệu truyền thông xã hội, nhật ký trình duyệt cũng như phân tích văn bản, dữ liệu cảm biến. Để có được bức tranh đầy đủ hơn về khách hàng của họ. Mục tiêu lớn hơn, trong nhiều trường hợp, là tạo ra các mô hình dự đoán.
Xem thêm: Dịch vụ và giải pháp Big Data cho lĩnh vực Y - Dược - Chăm Sóc Sức Khỏe
Tìm hiểu về mối quan hệ giữa Big Data và Cloud
Việc tận dụng và khai thác Big Data để phục vụ cho mục đích cải thiện hiệu quả hoạt động kinh doanh ở mỗi công ty ngày càng trở nên quan trọng và đem lại lợi ích cực kỳ to lớn. Big Data được xem là tài sản cực kỳ chủ lực không thuộc tài chính và nhân lực, nên tài nguyên này cũng cần được quản lý và sử dụng đúng cách.
Quyển sách mới ra “hiểu số để tăng số – Sexy little number” của Dimitrix Maex & Paul B.Brown đưa ra một góc nhìn tổng hợp trong việc sử dụng số liệu để thực hiện tiếp thị marketing trong thời đại công nghiệp số hoá, dữ liệu lớn. Trong bài này chúng tôi sẽ tóm tắt 1 số ý chính từ quyển sách cho bạn không có thời gian đọc hết quyển sách này.
Bối cảnh, nguyên nhân tại sao các công ty ngày nay cần định hướng dữ liệu (Data – driven)
Nếu các bạn có theo dõi những các bài viết trước đây của thì chúng tôi đã đề cập nhiều về tầm quan trọng của dữ liệu – được coi là nguồn sống của mọi tổ chức trong thời đại 4.0 – cũng như các xu hướng của Big Data, Data Analytics, và nhu cầu khai thác dữ liệu để đạt được giá trị, lợi ích trong kinh doanh ngày càng được quan tâm hơn.
Xem thêm: CÔNG TY ĐỊNH HƯỚNG DỮ LIỆU (DATA – DRIVEN ENTERPRISE) (PHẦN 1)
Big data hay còn gọi là dữ liệu lớn, làm liên tưởng đến hình ảnh của hệ thống máy chủ khổng lồ. Nhưng Big data rộng và lớn hơn thế nhiều. Có 10 lĩnh vực chính trong đó dữ liệu hiện đang được sử dụng để tạo lợi thế tuyệt vời. Trong đó, dữ liệu có thể được đưa vào hầu hết mọi mục đích.
Dữ liệu lớn có ở rất nhiều tổ chức, nhiều hoạt động xã hội, kinh doanh, khoa học và tiềm ẩn nhiều giá trị to lớn. Việc đó đồng nghĩa với các nhà khoa học phải đau đầu khi đối phó với việc lưu trữ, xử lý khối lượng số liệu khổng lồ và đa dạng về chủng loại dữ liệu.
Trở lại với chủ đề Data security, bảo mật dữ liệu, ở phần 1 bài viết trước chúng ta đã cùng nhau tìm hiểu về thực trạng Data security trên toàn cầu thông qua bàn luận những số liệu từ các báo cáo, nghiên cứu của Verizon và IBM về Data breach (xâm phạm, đánh cắp, rò rỉ dữ liệu) tại những công ty, tổ chức đến từ nhiều quốc gia khác nhau; cũng như tìm hiểu tổng quan về Data security như khái niệm, lợi ích, thách thức.
Xem thêm: GIẢI PHÁP CẢI THIỆN BẢO MẬT DỮ LIỆU – DATA SECURITY
Ngoài ra chúng tôi còn có sẵn data địa điểm rất hữu ích cho các dự án khởi nghiệp về du lịch, địa điểm, mạng xã hội du lịch, ...
Xem thêm: Dịch vụ và giải pháp Big Data cho lĩnh vực du lịch
Phân tích dự báo hay còn gọi Predictive analytics là một trong những phương pháp, kỹ thuật phân tích dữ liệu phổ biến và quan trọng nhất ngày nay. Đây là công cụ hữu ích để những nhà khoa học, chuyên gia hoạt động ở lĩnh vực Data science có cái nhìn chi tiết về đối tượng nghiên cứu, khám phá các mối liên hệ, đưa ra những phán đoán về đối tượng nghiên cứu ở tương lai chứ không chỉ dừng lại tại quá trình mô tả.
Xem thêm: TỔNG QUAN VỀ PREDICTIVE ANALYTICS (PHÂN TÍCH DỰ BÁO) (PHẦN 1)
Ở thời điểm nay, không phải tài sản vật chất, thiết bị máy móc hay cơ sở hạ tầng sản phẩm là tài sản lớn nhất của một doanh nghiệp, mà chính là khách hàng. Nếu bạn không thể làm hài lòng khách hàng và hiểu nhu cầu của họ, thì bạn sẽ không bao giờ trở thành chủ sở hữu của một doanh nghiệp thành công.
Xem thêm: Giải pháp Big data cho lĩnh vực Dịch Vụ Khách Hàng
Tầm quan trọng của Big Data (Dữ liệu lớn) và sự nhận thức về giá trị của nó giảm dần, nhiều công ty đầu tư vào lĩnh vực này nhưng không đem lại kỳ vọng, và kết quả tốt lợi. Nguyên nhân do nhu cầu và tính chất phức tạp của hệ thống công nghệ kỹ thuật phải xây dựng, bảo trì, chi phí lại cao, thiếu nguồn nhân lực có chuyên môn sâu, và kỹ năng về lĩnh vực Data Science hay Data Analytics,…
Ở bài viết trước, đã giới thiệu đến các bạn thuật toán đầu tiên của mô hình Classification – mô hình phân loại – là thuật toán K nearest neighbor (KNN) với công thức cơ bản, và ví dụ đơn giản về ứng dụng của KNN trong ngành ngân hàng để hiểu hơn cách vận hành thuật toán.
Xem thêm: PHƯƠNG PHÁP ĐÁNH GIÁ MÔ HÌNH PHÂN LOẠI (CLASSIFICATION MODEL EVALUTATION)
Hacker tối qua đã tung thông tin nghi là của hai triệu khách hàng từ một ngân hàng Việt Nam lên Raidforums, một website chuyên mua bán dữ liệu.
Các thông tin bị rò rỉ bao gồm tên đầy đủ, số chứng minh thư, số điện thoại, địa chỉ nhà, ngày tháng năm sinh, giới tính, email và nghề nghiệp.
Big Data được ứng dụng trong rất nhiều lĩnh vực khác nhau như đã giới thiệu ở bài viết “Big Data – Tên gọi gợi lên khái niệm”. Bài viết tiếp theo dưới đây sẽ nói chi tiết hơn về các ứng dụng của Big data trong từng trường hợp cụ thể, và trong từng lĩnh vực đặc thù. Qua đó chúng ta sẽ thấy được tầm quan trọng trong việc thu thập và phân tích dữ liệu Big data.
Để thu thập các thông tin bệnh nhân các nhà nghiên cứu phải sử dụng đến đơn vị petabyte. Mỗi petabyte dữ liệu tương đương với 1 triệu gigabyte. Công ty Express Scripts, có trụ sở tại St Louis, Missouri, Mỹ, đã thu thập được 22 petabyte dữ liệu y tế từ 83 triệu bệnh nhân, với số lượng dữ liệu này được chuyển đổi thành định dạng MP3, sẽ mất khoảng 44.000 năm để lắng nghe hết số lượng tệp nhạc này.
Xem thêm: Sự ảnh hưởng của “Big data” tới ngành Dược trong tương lai
Ở các bài viết trước, chúng tôi đã giới thiệu về khái niệm Chatbot và cách thức vận hành cũng như những phương pháp áp dụng cho quá trình phát triển Chatbot. Ở bài viết lần này, chúng tôi sẽ trình bày các lợi ích của Chatbot đem lại cho khách hàng và các công ty hoạt động kinh doanh.
Xem thêm: TỔNG QUAN VỀ CHATBOT (PHẦN 3): LỢI ÍCH CỦA CHATBOT
Murray Webb, 33 tuổi, tốt nghiệp thạc sĩ về thống kê ứng dụng (applied statistics) tại Trường Đại học Kennesaw (Atlanta, Mỹ), hiện kiếm được 160.000 đô la một năm với công việc chủ yếu là theo dõi phần thông tin về dữ liệu chăm sóc sức khỏe khách hàng cho các bệnh viện. Webb cho biết hằng tuần đều có người đại diện của các công ty cũng như các công ty chuyên cung cấp nguồn nhân lực tìm đến anh và đưa ra các lời mời làm việc như một nhà khoa học dữ liệu (data scientist).
Một trong những xu hướng phát triển cùng với thời đại đó chính là việc áp dụng phân tích dữ liệu Big data trong doanh nghiệp. Dưới đây là một số ứng dụng của Big data được nhiều doanh nghiệp lớn áp dụng. Từ đó rút ra bài học kinh nghiệm cho các doanh nghiệp Việt Nam, khi có thể còn đang chật vật với việc phân tích dữ liệu.
Xem thêm: Ứng dụng của Big Data và bài học cho những doanh nghiệp Việt Nam hiện nay
Business Intelligenc (BI) hay Data Analytics – phân tích dữ liệu từ lâu đã trở thành các công cụ hữu ích hỗ trợ các tổ chức, công ty trong quá trình hoạt động và phát triển. Ở bài viết lần này, sẽ giới thiệu đến các bạn các lợi ích của phân tích dữ liệu trong kinh doanh, nhưng trước tiên ta cùng phân biệt rõ 2 khái niệm được nêu ở trên mà nhiều người thường nhầm lẫn.
Phân tích dữ liệu là một công việc rất quan trọng giúp chúng ta có thể lập báo cáo tốt hơn, tránh được những sai sót, đảm bảo được tính chính xác của báo cáo. Vậy phân tích dữ liệu là phải làm những công việc gì? Sau đây chúng ta sẽ tìm hiểu về kỹ năng phân tích dữ liệu trước khi lập báo cáo trên Excel thông qua 1 bài tập sau:
Giả sử rằng bạn làm ở vị trí trưởng bộ phận bán hàng. Cuối tháng bạn nhận được 1 bảng dữ liệu về bán hàng trong tháng của cửa hàng mình như sau:
Trở lại với chủ đề bài viết về thuật toán cây quyết định, ở bài viết trước đã giới thiệu đến các bạn tổng quan thế nào là Decision Tree, các công thức quan trọng để xác định cách phân nhánh tối ưu hay nói cách khác là đem lại kết quả phân loại (classification) chính xác dựa trên các thuộc tính dữ liệu và đặc biệt là thuật toán CART (classification and regression tree) sử dụng công thức “Goodness of Split”.
Xem thêm: THUẬT TOÁN CÂY QUYẾT ĐỊNH (P.2): CART (GINI INDEX)
Ngày nay, tiềm năng phát triển các chiến lược kinh doanh dựa trên dữ liệu và thông tin là lớn hơn bao giờ hết. Đối với một số tổ chức, dữ liệu và phân tích dữ liệu đã trở thành động lực chính trong việc đề xuất các chiến lược kinh doanh của họ.
Xem thêm: CÔNG TY ĐỊNH HƯỚNG DỮ LIỆU (DATA – DRIVEN ENTERPRISE) (PHẦN 2)
Bạn có biết là những vị trí liên quan tới lĩnh vực khoa học dữ liệu (data science) và phân tích dữ liệu (data analysis) là khó tuyển nhất với một công ty không? Sự bùng nổ nhu cầu tìm kiếm các chuyên gia trong những lĩnh vực này mở ra hàng loạt nhu cầu và đồng thời, đẩy thị trường tuyển dụng vào tình trạng cung không đủ đáp ứng cầu.
Sự phát triển của ngành ngân hàng (Banking) đi đôi với sự ra đời của Big Data
Ngành ngân hàng đã phát triển theo bước nhảy vọt trong thập kỷ qua từ hoạt động vận hành kinh doanh đến cung cấp dịch vụ. Điều đáng ngạc nhiên chính là, hầu hết các ngân hàng đều gặp khó khăn hay thất bại trong việc sử dụng, khai thác thông tin, dữ liệu từ cơ sở dữ liệu (database) mà họ có được từ khách hàng và từ các chi nhánh, bộ phận của tổ chức.
Xem thêm: ỨNG DỤNG CỦA BIG DATA TRONG LĨNH VỰC NGÂN HÀNG (PHẦN 1)
Quay trở lại với chủ đề về dữ liệu khách hàng, ở bài viết phần 1 và phần 2, đã giới thiệu đến các bạn những khái niệm về phân tích dữ liệu khách hàng, loại dữ liệu khách hàng có thể thu thập, và lợi ích, cũng như mục đích của quá trình Customer data analytics. Trong phần 3 lần này, chúng tôi sẽ cung cấp những giải pháp hỗ trợ các công ty khai thác nguồn dữ liệu khách hàng của họ sao cho hiệu quả nhất.
Xem thêm: TỔNG QUAN VỀ CUSTOMER DATA (P.3) GIẢI PHÁP KHAI THÁC CUSTOMER DATA HIỆU QUẢ
TTCT - College Board, tổ chức phi lợi nhuận đang phụ trách kỳ thi SAT, đã bán mỗi cái tên thí sinh kèm theo các thông tin liên quan với giá 47 cent (khoảng 11.000 đồng), gây ra những tranh cãi dữ dội về tuyển sinh đại học ở Mỹ.
![]() |
Ảnh: Chronicle.com |
Xem thêm: Bán 47 cent /01 tên thí sinh thi SAT: Áp lực khoa cử kiểu Mỹ
Nếu các bạn đã theo dõi các bài viết của Big Data Uni thì chắc cũng đã nắm được tổng quan về Big Data bao gồm khái niệm, lợi ích và ứng dụng của nó trong nhiều lĩnh vực khác nhau. Trong chủ đề bài viết lần này và sắp tới, chúng tôi sẽ không đề cập về những giá trị mà Big Data đem lại mà đi vào trọng tâm một trong những công cụ, quá trình quan trọng nhất đối với mỗi dự án Big Data đó chính là Data mining (hay còn gọi là khai phá dữ liệu).
Xem thêm: TỔNG QUAN VỀ DATA MINING (P1): KHAI PHÁ DỮ LIỆU LÀ GÌ?
Big Data ngày càng được sử dụng để tối ưu hóa các quy trình kinh doanh. Các nhà bán lẻ có thể tối ưu hóa cổ phiếu của họ dựa trên dự đoán. Từ dữ liệu truyền thông xã hội, xu hướng tìm kiếm trên web và dự báo thời tiết.
Xem thêm: Giải Pháp Big Data Tối ưu hóa quy trình kinh doanh
Chắc bạn đã một lần từng nghe, hoặc biết đến Chatbot khi đã vô tình bắt gặp nó được thể hiện ở các trang mạng xã hội (social media platform) hay trên các ứng dụng mua sắm trực tuyến (online shopping application). Chatbot hiện đang là công cụ hỗ trợ đắc lực dành cho các công ty, tổ chức trong việc phát triển, duy trì và cải thiện mối quan hệ với khách hàng (customer relationship management).
Như đã giới thiệu ở bài viết trước “Big Data – thành quả của cách mạng công nghệ 4.0” về nguồn gốc của Big Data, ở bài viết này chúng ta sẽ bàn luận sâu hơn về khái niệm Big Data.
Trở lại với chủ đề về các thuật toán cây quyết định Decision trees, như vậy qua các bài viết trước chúng ta đã tìm hiểu về tổng quan thuật toán cây quyết định là gì, làm quen với các dạng thuật toán CART (phân 2 nhánh) sử dụng công thức Goodness of Split, Gini Index và C4.5 (phân nhiều hơn 2 nhánh) sử dụng công thức Entropy kết hợp với Information gain.
Xem thêm: THUẬT TOÁN CÂY QUYẾT ĐỊNH (P.4): ƯU & KHUYẾT ĐIỂM, STOPPING & PRUNING METHOD
Ở bài viết trước, phần 1 về ứng dụng Big Data trong lĩnh vực E-commerce, đã giới thiệu đến các bạn tổng quan về thị trường E-commerce, các định nghĩa, khái niệm về kinh doanh trực tuyến, đồng thời mô tả nguồn dữ liệu E-commerce có những đặc tính được coi là Big Data và nói lên nhu cầu khai thác.
Xem thêm: ỨNG DỤNG BIG DATA TRONG LĨNH VỰC E-COMMERCE (PHẦN 2)
Khoa học dữ liệu đang dần khẳng định vai trò của mình trong việc cải thiện sức khỏe ngày nay. Big Data không chỉ được ứng dụng để xác định phương hướng điều trị mà giúp cải thiện quá trình chăm sóc sức khỏe. Từ khi Big Data được ứng dụng vào lĩnh vực chăm sóc sức khỏe, nó đã tạo nên nhiều tác động lớn trong việc giảm lãng phí tiền bạc và thời gian.
Tại Việt Nam, kho dữ liệu còn rất hạn chế, muốn nghiên cứu phải đòi hỏi nền tảng công nghệ rất lớn. Tuy nhiên, để phục vụ người dân tốt hơn thì việc xây dựng dữ liệu lớn (big data) là việc cần thiết, phải đẩy mạnh triển khai trong thời gian tới.
Nhiều doanh nghiệp Việt Nam chưa xây dựng big data trong hoạt động sản xuất, kinh doanh và quản trị doanh nghiệp
Ngày nay, khi nhiều tổ chức đẩy mạnh tiếp cận dữ liệu, và cho rằng dữ liệu là nguồn lực quan trọng để phát triển, thì Data quality – chất lượng dữ liệu – càng được quan tâm và chú ý hơn. Theo Gartner (công ty hàng đầu thế giới chuyên về tư vấn và nghiên cứu), dữ liệu có chất lượng thấp sẽ ảnh hưởng tiêu cực đến năng suất, lợi nhuận của mỗi tổ chức đặc biệt khi mọi hành động, quyết định, chiến lược đều dựa vào dữ liệu.
Xem thêm: TỔNG QUAN VỀ DATA QUALITY – CHẤT LƯỢNG DỮ LIỆU (P1)
Trong ngành công nghiệp du lịch, dữ liệu lớn (hay còn gọi là Big data) là một trong những khái niệm quan trọng nhất để nắm bắt bởi hầu hết các doanh nghiệp khác đã sử dụng nó và gặt hái những phần thưởng.
Xem thêm: 5 bất ngờ mà dữ liệu lớn (Big Data) mang lại trong ngành du lịch
Big Data có thể tạo ra các phương pháp tiếp cận dựa trên dữ liệu sáng tạo để dạy học sinh. Ở nhiều nước, việc ứng dụng Big Data trong trường học và cao đẳng đã dần trở nên phổ biến. Nhưng các nước đang phát triển cũng bắt đầu nghiên cứu để ứng dụng trong các hoạt động giảng dạy.
Ở bài viết trước, chúng tôi đã giới thiệu sơ lược về Chatbot về khái niệm cũng như cách thức vận hành đơn giản nhất của Chatbot. Lần này, chúng tôi sẽ cung cấp cho các bạn về các phương pháp, thuật toán là cơ sở hoạt động của Chatbot hay nói cách khác Chatbot hoạt động ra sao?
Xem thêm: TỔNG QUAN VỀ CHATBOT (PHẦN 2): CHATBOT HOẠT ĐỘNG NHƯ THẾ NÀO?
Dữ liệu khách hàng hay Customer data được coi là tài sản, nguồn thông tin vô giá đối với mọi công ty thuộc nhiều lĩnh vực kinh doanh khác nhau. Việc triển khai các quy trình khai thác, dự án nghiên cứu, phân tích Customer data với mục đích tìm hiểu, nắm bắt mong muốn, nhu cầu thầm kín của khách hàng, và chuyển nó thành những giá trị cụ thể thông qua từng chiến lược, kế hoạch hoạt động chính là chìa khóa cạnh tranh của mỗi tổ chức ngày nay.
Xem thêm: TỔNG QUAN VỀ CUSTOMER DATA (P.1) – DỮ LIỆU KHÁCH HÀNG LÀ GÌ?
Từ khi có ứng dụng data science, ngành y tế và chăm sóc sức khỏe cũng có những bước nhảy vọt quan trọng. 5 nhóm lĩnh vực data science đã áp dụng thành công những ứng dụng của data science có thể kể đến như Phân tích hình ảnh y khoa, gien và bộ gien, Điều chế thuốc, phân tích và chẩn đoán, ứng dụng phần mềm sức khỏe hay trợ lý sức khỏe tâm lý.
Xem thêm: Ứng dụng Data Science vào lĩnh vực Y tế mang tính đột phá
Sự xuất hiện ngày càng nhiều các sản phẩm công nghệ, kỹ thuật số thông minh tiên tiến gia tăng tối đa trải nghiệm khách hàng cho thấy mức độ phổ biến và ứng dụng rộng rãi của Machine Learning để phát triển các sản phẩm AI (Artificial Intelligence – trí tuệ nhân tạo). Cũng chính các thay đổi cực kỳ lớn và thịnh hành của môi trường công nghệ đã tạo cơ hội, mở ra cánh cửa để Big Data thúc đẩy kinh tế, hỗ trợ các công ty cải thiện hiệu quả kinh doanh của mình thông qua khai thác giá trị tiềm ẩn, thông tin hữu ích từ dữ liệu.
Xem thêm: TOP CÁC XU HƯỚNG BIG DATA SẼ ĐI ĐẦU TRONG NĂM 2019 (PHẦN 1)
Marketing là chìa khóa để cánh cửa thành công cho bất kỳ doanh nghiệp nào. Giờ đây, không chỉ các công ty lớn có thể điều hành các hoạt động quảng cáo tiếp thị mà cả các doanh nhân nhỏ cũng có thể chạy các chiến dịch quảng cáo thành công trên các nền tảng truyền thông xã hội và quảng bá sản phẩm của họ.
Như ta đã biết, hệ thống phân tích kinh doanh thông minh (BI) không chỉ là phần mềm. Để triển khai thành công hệ thống BI, doanh nghiệp cần phải có quy trình và cơ sở hạ tầng tốt bên cạnh việc lựa chọn đúng úng dụng phân tích kinh doanh thông minh (BI tools).
Xem thêm: Cách tốt nhất để thành công với hệ thống phân tích kinh doanh – BI (Business Intelligence)
Giới thiệu về K – nearest neighbor (KNN)
Ở các bài viết trước đã giới thiệu đến các bạn một cách tổng quan những chủ đề về Data mining (Khai phá dữ liệu), Predictive analytics (Phân tích dự báo), Statistics (Thống kê) bao gồm các khái niệm quan trọng, kỹ thuật phân tích và ứng dụng, lợi ích trong các lĩnh vực khác nhau.
Xem thêm: THUẬT TOÁN KNN VÀ VÍ DỤ ĐƠN GIẢN TRONG NGÀNH NGÂN HÀNG
Hiện nay dữ liệu lớn (big data) và khoa học dữ liệu là một lĩnh vực rất sôi nỗi và phát triễn nhanh trong thời gian gần đây. Như đánh giá của Trường Đại Học Harvard, Hoa Kỳ thì nhà khoa học dữ liệu (data scientist) sẽ là công việc hấp dẫn nhất thế kỹ 21.
Thị trường E-commerce cùng với sự ra đời của những thành quả Cách mạng công nghiệp 4.0 như Artificial Intelligent (trí tuệ nhân tạo AI), Machine Learning (học máy) và đặc biệt là Big Data đã thay đổi một cách chóng mặt từ cách thức tiếp cận khách hàng cho đến cách thức quản lý, phân phối sản phẩm hàng hóa thông qua các webstie, app thông minh,..
Xem thêm: ỨNG DỤNG BIG DATA TRONG LĨNH VỰC E-COMMERCE (PHẦN 1)
Mời quý vị tham khảo hồ sơ năng lực của DVMS tại đây >>
Head Office: 95/2/26 Bình Lợi, Phường 13, Q. Bình Thạnh, TP.HCM, Việt Nam.
Tel: 02836028937
Email: sale@dvms.vn
BạnCầnGìCứHỏiDVMS: Chuyển đổi số giao thông, vận tải, giao nhận thông minh ; Giải pháp Blockchain ; Tư vấn, xây dựng, chuyển giao mạng xã hội ; Dịch vụ dữ liệu, Big data ; Uber Giúp việc, uber dịch vụ tại nhà ; Chuyển đổi số cho bệnh viện, y tế ; Chuyển đổi số Bác sĩ gia đình, y tế tại nhà ; Chuyển đổi số cho công ty tín dụng, ngân hàng, Fintech ; Chuyển đổi số cho công ty bảo hiểm ; Chuyển đổi số bán hàng, quản lý hệ thống phân phối ; Chuyển đổi số lĩnh vực du lịch; Chuyển đổi số lĩnh xăng dầu, gas; Giải pháp OTT; Chuyển đổi số nhà thuốc và công ty dược; Chuyển đổi số doanh nghiệp taxi; Chuyển đổi số doanh nghiệp vận tải; Chuyển đổi số dịch vụ tại nhà; Chuyển đổi số nông nghiệp; Giải pháp QRCODE ; Đào tạo chuyển đổi số, xây dựng đội ngũ CNTT cho doanh nghiệp và start-up; Giải pháp chăm sóc sức khỏe tại nhà ; ứng dụng định vị vệ tinh vào cuộc sống;Giải pháp truyền hình; thực tế ảo; mobile game; và giải pháp cho nhiều lĩnh vực khác