SK Telecom của Hàn Quốc được cho là tung ra một nền tảng dựa trên blockchain cho việc xác thực định danh của khách hàng trong năm nay.
Giới thiệu về K – nearest neighbor (KNN)
Ở các bài viết trước đã giới thiệu đến các bạn một cách tổng quan những chủ đề về Data mining (Khai phá dữ liệu), Predictive analytics (Phân tích dự báo), Statistics (Thống kê) bao gồm các khái niệm quan trọng, kỹ thuật phân tích và ứng dụng, lợi ích trong các lĩnh vực khác nhau.

Xem thêm: THUẬT TOÁN KNN VÀ VÍ DỤ ĐƠN GIẢN TRONG NGÀNH NGÂN HÀNG
Trở lại với chủ đề về Data mining, ở phần 1 đã giới thiệu đến các bạn về khái niệm, tầm quan trọng, lợi ích chính và thách thức của Data mining, tiếp tục với phần 2, sẽ đi vào phân tích các ứng dụng của Data mining trong các lĩnh vực một cách chi tiết hơn. Nhưng trước tiên chúng ta cùng điểm qua các loại thông tin và loại dữ liệu được thu thập và phân tích bằng các công cụ Data mining.

Xem thêm: TỔNG QUAN VỀ DATA MINING (P2): ỨNG DỤNG TRONG CÁC LĨNH VỰC
Big Data ngày càng được sử dụng để tối ưu hóa các quy trình kinh doanh. Các nhà bán lẻ có thể tối ưu hóa cổ phiếu của họ dựa trên dự đoán. Từ dữ liệu truyền thông xã hội, xu hướng tìm kiếm trên web và dự báo thời tiết.

Xem thêm: Giải Pháp Big Data Tối ưu hóa quy trình kinh doanh
Big Data được ứng dụng trong rất nhiều lĩnh vực khác nhau như đã giới thiệu ở bài viết “Big Data – Tên gọi gợi lên khái niệm”. Bài viết tiếp theo dưới đây sẽ nói chi tiết hơn về các ứng dụng của Big data trong từng trường hợp cụ thể, và trong từng lĩnh vực đặc thù. Qua đó chúng ta sẽ thấy được tầm quan trọng trong việc thu thập và phân tích dữ liệu Big data.

Xem thêm: ỨNG DỤNG CỦA BIG DATA TRONG MỌI LĨNH VỰC
Tìm hiểu về mối quan hệ giữa Big Data và Cloud
Việc tận dụng và khai thác Big Data để phục vụ cho mục đích cải thiện hiệu quả hoạt động kinh doanh ở mỗi công ty ngày càng trở nên quan trọng và đem lại lợi ích cực kỳ to lớn. Big Data được xem là tài sản cực kỳ chủ lực không thuộc tài chính và nhân lực, nên tài nguyên này cũng cần được quản lý và sử dụng đúng cách.

Xem thêm: BIG DATA VÀ CLOUD – SỰ KẾT HỢP HOÀN HẢO
Big Data có thể tạo ra các phương pháp tiếp cận dựa trên dữ liệu sáng tạo để dạy học sinh. Ở nhiều nước, việc ứng dụng Big Data trong trường học và cao đẳng đã dần trở nên phổ biến. Nhưng các nước đang phát triển cũng bắt đầu nghiên cứu để ứng dụng trong các hoạt động giảng dạy.

Xem thêm: Giải pháp Big data cho lĩnh vực Giáo Dục
Như vậy chúng ta đã cùng nhau đi qua 4 phần của series bài viết về thuật toán Decision trees hay còn gọi là thuật toán cây quyết định. Chúng ta đã làm quen với định nghĩa tổng quát, các dạng cây quyết định bao gồm phân 2 nhánh – CART, và nhiều nhánh C4.5 sử dụng các công thức Goodness of Split, Gini Index, Entropy kết hợp với Information Gain, hay Gain Ratio để xây dựng mô hình áp dụng cho biến mục tiêu là biến định tính, và chúng ta cũng tiếp cận qua một số cách thức để tăng độ hiệu quả của mô hình, tránh trường hợp Overfitting hay Underfitting như Stopping rule và Pruning method, và nhìn lại những ưu điểm, khuyết điểm một cách tổng thể về Decision Trees.

Xem thêm: THUẬT TOÁN CÂY QUYẾT ĐỊNH (P.5) REGRESSION TREE VÀ DECISION RULES
Trong ngành công nghiệp du lịch, dữ liệu lớn (hay còn gọi là Big data) là một trong những khái niệm quan trọng nhất để nắm bắt bởi hầu hết các doanh nghiệp khác đã sử dụng nó và gặt hái những phần thưởng.

Xem thêm: 5 bất ngờ mà dữ liệu lớn (Big Data) mang lại trong ngành du lịch
Dữ liệu khách hàng hay Customer data được coi là tài sản, nguồn thông tin vô giá đối với mọi công ty thuộc nhiều lĩnh vực kinh doanh khác nhau. Việc triển khai các quy trình khai thác, dự án nghiên cứu, phân tích Customer data với mục đích tìm hiểu, nắm bắt mong muốn, nhu cầu thầm kín của khách hàng, và chuyển nó thành những giá trị cụ thể thông qua từng chiến lược, kế hoạch hoạt động chính là chìa khóa cạnh tranh của mỗi tổ chức ngày nay.

Xem thêm: TỔNG QUAN VỀ CUSTOMER DATA (P.1) – DỮ LIỆU KHÁCH HÀNG LÀ GÌ?
Đây là một trong những lĩnh vực sử dụng Big data công khai và lớn nhất hiện nay. Big data được sử dụng để hiểu rõ hơn về khách hàng cũng như hành vi và sở thích của họ. Các công ty rất muốn mở rộng bộ dữ liệu truyền thông của họ, dữ liệu truyền thông xã hội, nhật ký trình duyệt cũng như phân tích văn bản, dữ liệu cảm biến. Để có được bức tranh đầy đủ hơn về khách hàng của họ. Mục tiêu lớn hơn, trong nhiều trường hợp, là tạo ra các mô hình dự đoán.

Xem thêm: Giải pháp Big data giúp hiểu Khách Hàng Mục Tiêu
Dữ liệu lớn (big data) là một trong những công nghệ mới quan trọng nhất mà ngành du lịch khách sạn cần nắm bắt.
Các ngành công nghiệp khác đã sử dụng dữ liệu lớn và gặt hái được một số thành công đáng kể. Bao gồm khả năng đưa ra quyết định chính xác, nhờ tìm hiểu về khách hàng, đối thủ cạnh tranh, cải thiện trải nghiệm khách hàng và tăng doanh thu. Trong bài viết này, bạn sẽ tìm hiểu thêm về dữ liệu lớn và cách nó có thể đem lại lợi ích cho các công ty du lịch và khách sạn.

Xem thêm: 5 lợi ích dữ liệu lớn (Big data) đem lại cho ngành du lịch khách sạn
Dịch vụ dữ liệu chính xác, tin cậy , đúng mục tiêu , đúng nhu cầu cho lĩnh vực du lịch, lữ hành, team-building,...
Ngoài ra chúng tôi còn có sẵn data địa điểm rất hữu ích cho các dự án khởi nghiệp về du lịch, địa điểm, mạng xã hội du lịch, ...

Xem thêm: Dịch vụ và giải pháp Big Data cho lĩnh vực du lịch
Big data hay còn gọi là dữ liệu lớn, làm liên tưởng đến hình ảnh của hệ thống máy chủ khổng lồ. Nhưng Big data rộng và lớn hơn thế nhiều. Có 10 lĩnh vực chính trong đó dữ liệu hiện đang được sử dụng để tạo lợi thế tuyệt vời. Trong đó, dữ liệu có thể được đưa vào hầu hết mọi mục đích.

Xem thêm: Big Data và Ứng dụng công nghệ trong thực tiễn
Khoa học dữ liệu đang dần khẳng định vai trò của mình trong việc cải thiện sức khỏe ngày nay. Big Data không chỉ được ứng dụng để xác định phương hướng điều trị mà giúp cải thiện quá trình chăm sóc sức khỏe. Từ khi Big Data được ứng dụng vào lĩnh vực chăm sóc sức khỏe, nó đã tạo nên nhiều tác động lớn trong việc giảm lãng phí tiền bạc và thời gian.

Xem thêm: Giải pháp Big data cho lĩnh vực y tế
Bài chia sẻ của Ths.Bs Nguyễn Thành Danh (Danh Nguyen) - chuyên gia trong lĩnh vực quản lý y tế sau khi tham dự Hội thảo “Big Data trong cải tiến chất lượng y tế” được tổ chức tại Bệnh viện Việt Đức:

Xem thêm: Bùng nỗ digital healthcare, big data trong lĩnh vực y tế đang đến rất gần
Theo một báo cáo mới được công bố tại Diễn đàn Kinh tế Thế giới, những thay đổi về nhân khẩu học và tiến bộ kỹ thuật có thể dẫn đến việc 5 triệu việc làm sẽ biến mất vào năm 2020. Tuy nhiên, ngược lại có một số công việc lại được dự đoán sẽ có sự tăng trưởng đáng kể, trong đó có nghề phân tích dữ liệu.

Xem thêm: Chọn nghề phân tích dữ liệu?
Đa số các bạn nhảy vào phân tích dữ liệu ngay, trước khi bạn lên kế hoạch và mục tiêu của dự án phân tích dữ liệu. Và cũng tương tự như vậy, bạn có thể nhảy vào làm slide cho một buổi thuyết trình trong môi trường kinh doanh trước khi bạn lên kế hoạch cho thuyết trình đó. Và tất nhiên bạn sẽ kết quả là tốn rất nhiều thời gian cho slide mà không đạt được kết quả tốt nhất.

Xem thêm: Phương pháp thuyết trình đạt hiệu quả trong môi trường kinh doanh!
Như đã giới thiệu ở bài viết trước “Big Data – thành quả của cách mạng công nghệ 4.0” về nguồn gốc của Big Data, ở bài viết này chúng ta sẽ bàn luận sâu hơn về khái niệm Big Data.

Xem thêm: BIG DATA LÀ GÌ? – MỘT KHÁI NIỆM CỰC KỲ ĐƠN GIẢN
Sự phát triển của ngành ngân hàng (Banking) đi đôi với sự ra đời của Big Data
Ngành ngân hàng đã phát triển theo bước nhảy vọt trong thập kỷ qua từ hoạt động vận hành kinh doanh đến cung cấp dịch vụ. Điều đáng ngạc nhiên chính là, hầu hết các ngân hàng đều gặp khó khăn hay thất bại trong việc sử dụng, khai thác thông tin, dữ liệu từ cơ sở dữ liệu (database) mà họ có được từ khách hàng và từ các chi nhánh, bộ phận của tổ chức.

Xem thêm: ỨNG DỤNG CỦA BIG DATA TRONG LĨNH VỰC NGÂN HÀNG (PHẦN 1)
Big data trong ngành du lịch đang bùng nổ trong những năm gần đây. Nhiều người cho rằng Big Data sẽ lấy đi sự cá nhân hóa của các doanh nghiệp du lịch, nhưng điều này không hề đúng bởi công nghệ du lịch đã phát triển và Big Data đang được sử dụng để đưa thêm nhiều sự liên hệ cá nhân vào trải nghiệm khách hàng. Vậy Big Data là gì và nó được sử dụng như thế nào trong ngành du lịch? Hãy cùng tìm hiểu trong bài viết dưới đây.

Xem thêm: Từ BIG DATA đến cá nhân hóa trong lĩnh vực du lịch
Các công ty truyền thông và người hoạt động trong lĩnh vực giải trí cần thúc đẩy chuyển đổi kỹ thuật số để phân phối sản phẩm và nội dung của họ nhanh nhất có thể tại thị trường hiện tại.

Xem thêm: Giải pháp Big data cho lĩnh vực Truyền Thông và Giải Trí
Ngày nay, khi nhiều tổ chức đẩy mạnh tiếp cận dữ liệu, và cho rằng dữ liệu là nguồn lực quan trọng để phát triển, thì Data quality – chất lượng dữ liệu – càng được quan tâm và chú ý hơn. Theo Gartner (công ty hàng đầu thế giới chuyên về tư vấn và nghiên cứu), dữ liệu có chất lượng thấp sẽ ảnh hưởng tiêu cực đến năng suất, lợi nhuận của mỗi tổ chức đặc biệt khi mọi hành động, quyết định, chiến lược đều dựa vào dữ liệu.

Xem thêm: TỔNG QUAN VỀ DATA QUALITY – CHẤT LƯỢNG DỮ LIỆU (P1)
Ở các bài viết trước, chúng tôi đã giới thiệu về khái niệm Chatbot và cách thức vận hành cũng như những phương pháp áp dụng cho quá trình phát triển Chatbot. Ở bài viết lần này, chúng tôi sẽ trình bày các lợi ích của Chatbot đem lại cho khách hàng và các công ty hoạt động kinh doanh.

Xem thêm: TỔNG QUAN VỀ CHATBOT (PHẦN 3): LỢI ÍCH CỦA CHATBOT
Ở phần 1 bài viết cùng chủ đề, đã giới thiệu các khái niệm về Data quality, Data quality management; lợi ích; tầm quan trọng; và các tiêu chuẩn, tiêu chí đánh giá chất lượng dữ liệu. Mặc dù nhiều công ty, tổ chức hiện nay đã nhận thức được sự cần thiết của các nhiệm vụ trong Data quality, nhưng họ vẫn phải đối mặt với nhiều thách thức, khó khăn khác nhau dẫn đến việc thiết lập, và triển khai các giải pháp thích hợp càng được quan tâm hơn bao giờ hết.

Xem thêm: TỔNG QUAN VỀ DATA QUALITY – CHẤT LƯỢNG DỮ LIỆU (P2)
TTCT - College Board, tổ chức phi lợi nhuận đang phụ trách kỳ thi SAT, đã bán mỗi cái tên thí sinh kèm theo các thông tin liên quan với giá 47 cent (khoảng 11.000 đồng), gây ra những tranh cãi dữ dội về tuyển sinh đại học ở Mỹ.
Trở lại với chủ đề về thống kê, ở phần trước chúng tôi đã giới thiệu đến các bạn các khái niệm về thống kê cũng như lợi ích và ứng dụng của nó, tiếp theo ở phần này, chúng tôi sẽ đề cập đến một mảng kiến thức quan trọng khác đó chính Descriptive statistics (thống kê mô tả)

Xem thêm: TỔNG QUAN VỀ STATISTICS: DESCRIPTIVE STATISTICS (THỐNG KÊ MÔ TẢ)
Trong hệ thống ngân hàng, Big Data đã và đang được ứng dụng hiệu quả từ cách đây khá lâu. Big Data thể hiện vai trò không thể thay thế của mình trong mọi hoạt động của ngân hàng: từ thu tiền mặt đến quản lý tài chính. Các ứng dụng Big Data đã giúp giảm bớt rắc rối của khách hàng và tạo doanh thu cho các ngân hàng.

Xem thêm: Giải pháp Big data cho lĩnh vực Ngân hàng
Nếu các bạn có theo dõi những bài viết của chúng tôi về Data management (quản lý dữ liệu) và Data quality (chất lượng dữ liệu), thì chắc cũng biết tầm quan trọng của quá trình Data security; sự ra đời của những bộ luật, điều luật về bảo mật thông tin, dữ liệu như GDPR tại châu Âu, luật An ninh Mạng ở nước ta; đặc biệt là xu hướng khách hàng đang ngày càng quan tâm hơn về tính minh bạch trong việc sử dụng, và khả năng bảo vệ nguồn dữ liệu, thông tin cá nhân của họ tại các công ty.

Xem thêm: THỰC TRẠNG DATA SECURITY TRÊN TOÀN CẦU
Trở lại với chủ đề bài viết về thuật toán cây quyết định, ở bài viết trước đã giới thiệu đến các bạn tổng quan thế nào là Decision Tree, các công thức quan trọng để xác định cách phân nhánh tối ưu hay nói cách khác là đem lại kết quả phân loại (classification) chính xác dựa trên các thuộc tính dữ liệu và đặc biệt là thuật toán CART (classification and regression tree) sử dụng công thức “Goodness of Split”.

Xem thêm: THUẬT TOÁN CÂY QUYẾT ĐỊNH (P.2): CART (GINI INDEX)
Ở 2 bài viết trước đã giới thiệu đến các bạn thuật toán Classification đầu tiên là KNN (K – nearest neighbor) và một số phương pháp đánh giá mô hình phân loại như Hold out, Cross validation, hay Confusion matrix, Lift, Gain chart, ROC/ AUC. Trở lại với chủ đề về những thuật toán phân loại trong Data mining, lần này chúng tôi và các bạn sẽ tìm hiểu về Decision Tree, thuật toán có thể nói là “nổi tiếng”, “phổ biến” mà bất kỳ ai hoạt động và làm việc trong lĩnh vực khoa học dữ liệu, hoặc phân tích dữ liệu đều phải biết đến.

Xem thêm: THUẬT TOÁN CÂY QUYẾT ĐỊNH (P.1) : CLASSIFICATION & REGRESSION TREE (CART)
Mỗi năm thiên tai như bão, lũ lụt, động đất gây ra thiệt hại rất lớn và nhiều sinh mạng. Các nhà khoa học không thể dự đoán khả năng xảy ra thảm họa và đề xuất đủ biện pháp phòng ngừa cho chính phủ nếu không có sự giúp đỡ của Big Data.

Xem thêm: Giải pháp Big data trong Quản Lý Thiên Tai
Bạn có biết là những vị trí liên quan tới lĩnh vực khoa học dữ liệu (data science) và phân tích dữ liệu (data analysis) là khó tuyển nhất với một công ty không? Sự bùng nổ nhu cầu tìm kiếm các chuyên gia trong những lĩnh vực này mở ra hàng loạt nhu cầu và đồng thời, đẩy thị trường tuyển dụng vào tình trạng cung không đủ đáp ứng cầu.

Xem thêm: Data Analysis là gì? Cần học những gì?
Bối cảnh, nguyên nhân tại sao các công ty ngày nay cần định hướng dữ liệu (Data – driven)
Nếu các bạn có theo dõi những các bài viết trước đây của thì chúng tôi đã đề cập nhiều về tầm quan trọng của dữ liệu – được coi là nguồn sống của mọi tổ chức trong thời đại 4.0 – cũng như các xu hướng của Big Data, Data Analytics, và nhu cầu khai thác dữ liệu để đạt được giá trị, lợi ích trong kinh doanh ngày càng được quan tâm hơn.

Xem thêm: CÔNG TY ĐỊNH HƯỚNG DỮ LIỆU (DATA – DRIVEN ENTERPRISE) (PHẦN 1)
Thông thường, khi khối lượng của một tập dữ liệu rất lớn và không thể quản lý được như các cơ sở dữ liệu truyền thống, thì chúng ta có thể gọi nó là Big Data. Đến lúc này, đám mây cung cấp cơ sở hạ tầng cần thiết cho việc tính toán dữ liệu lớn. Trong cuộc sống thực, nhiều tổ chức đang kết hợp hai công nghệ này để cải thiện hoạt động điều phối kinh doanh của mình.

Xem thêm: Giải pháp Big data cho lĩnh vực Điện Toán Đám Mây
Để thành công và phát triển, một công ty cần phải có khả năng đạt được, giữ chân, thỏa mãn và thu hút càng nhiều khách hàng càng tốt. Hiểu rõ hơn về khách hàng thông qua phân tích dữ liệu khách hàng vừa là công việc, nhiệm vụ rất quan trọng vừa là cơ sở để đánh giá công ty hoạt động hiệu quả như thế nào.

Xem thêm: TỔNG QUAN VỀ CUSTOMER DATA (P.2) LỢI ÍCH CỦA DỮ LIỆU KHÁCH HÀNG
Ở các phần trước trong chủ đề về Statistics (thống kê) đã giới thiệu đến các bạn các khái niệm, lợi ích, ứng dụng của thống kê, đặc biệt Descriptive statistics (thống kê mô tả), một trong 2 dạng cơ bản của Statistics. Trở lại với bài viết lần này chúng tôi sẽ trình bày tóm tắt về dạng còn lại, chính là một số kiến thức của Inferential Statistics hay còn gọi là thống kê suy luận.

Xem thêm: TỔNG QUAN VỀ STATISTICS: INFERENTIAL STATISTICS (THỐNG KÊ SUY LUẬN)
Chủ đề về Big Data tác động đến social media marketing (tiếp thị qua mạng xã hội), mà cung cấp đến các bạn sẽ được chia thành 2 phần
- Phần 1: Sự “bùng nổ” của social media và xu hướng marketing mới
- Phần 2: Tác động của Big data đến xu hướng social media marketing

Xem thêm: SỰ “BÙNG NỔ” CỦA SOCIAL MEDIA VÀ XU HƯỚNG MARKETING MỚI
Tại Việt Nam, kho dữ liệu còn rất hạn chế, muốn nghiên cứu phải đòi hỏi nền tảng công nghệ rất lớn. Tuy nhiên, để phục vụ người dân tốt hơn thì việc xây dựng dữ liệu lớn (big data) là việc cần thiết, phải đẩy mạnh triển khai trong thời gian tới.

Nhiều doanh nghiệp Việt Nam chưa xây dựng big data trong hoạt động sản xuất, kinh doanh và quản trị doanh nghiệp
Xem thêm: Việt Nam còn thiếu big data?
Quay trở lại với chủ đề về Decision trees, thì ở 2 bài viết trước đã giới thiệu đến các bạn khái quát thế nào là thuật toán cây quyết định, bao gồm các thành phần, và một số công thức tính toán để lựa chọn các biến phân nhánh hay cách phân nhánh tối ưu, mục đích dự báo, phân loại, phân nhóm các đối tượng dữ liệu vào các nhóm, các lớp của biến mục tiêu sao cho chính xác nhất.

Xem thêm: THUẬT TOÁN CÂY QUYẾT ĐỊNH (P.3): C4.5 (ENTROPY)
KHI MỘT CHUYÊN GIA PHÂN TÍCH DỮ LIỆU NHẬN ĐƯỢC YÊU CẦU TỪ CÁC PHÒNG BAN, BỘ PHẬN HAY LÃNH ĐẠO CÔNG TY, CHUYÊN GIA ẤY CÓ THỂ NHẢY VÀO PHÂN TÍCH NGHIÊN CỨU NGAY VẤN ĐỀ. NGƯỜI LÀM PHÂN TÍCH DỮ LIỆU SẼ MONG MUỐN TỪ YÊU CẦU ĐƠN GIẢN BAN ĐẦU SẼ TÌM RA PHÁT HIỆN TUYỆT VỜI, ĐƯA RA ĐƯỢC CÁC ĐỀ XUẤT HAY NHẤT ĐỂ ÁP DỤNG CHO CÔNG TY. NHƯNG THỰC TẾ THƯỜNG KHÔNG THUẬN LỢI NHƯ VẬY.

Xem thêm: Các bước chuẩn bị cho một dự án phân tích dữ liệu thành công!
Murray Webb, 33 tuổi, tốt nghiệp thạc sĩ về thống kê ứng dụng (applied statistics) tại Trường Đại học Kennesaw (Atlanta, Mỹ), hiện kiếm được 160.000 đô la một năm với công việc chủ yếu là theo dõi phần thông tin về dữ liệu chăm sóc sức khỏe khách hàng cho các bệnh viện. Webb cho biết hằng tuần đều có người đại diện của các công ty cũng như các công ty chuyên cung cấp nguồn nhân lực tìm đến anh và đưa ra các lời mời làm việc như một nhà khoa học dữ liệu (data scientist).

Xem thêm: Khoa học dữ liệu – nghề đang hái ra tiền ở Mỹ
Nếu các bạn đã theo dõi các bài viết của Big Data Uni thì chắc cũng đã nắm được tổng quan về Big Data bao gồm khái niệm, lợi ích và ứng dụng của nó trong nhiều lĩnh vực khác nhau. Trong chủ đề bài viết lần này và sắp tới, chúng tôi sẽ không đề cập về những giá trị mà Big Data đem lại mà đi vào trọng tâm một trong những công cụ, quá trình quan trọng nhất đối với mỗi dự án Big Data đó chính là Data mining (hay còn gọi là khai phá dữ liệu).

Xem thêm: TỔNG QUAN VỀ DATA MINING (P1): KHAI PHÁ DỮ LIỆU LÀ GÌ?