Năm 2017, chúng ta chứng kiến một số cái tên lớn trong ngành công nghệ tham gia vào Blockchain. Bên cạnh Microsoft và IBM, Oracle tuyên bố sẽ tung ra một dịch vụ Blockchain (BaaS) dựa trên nền tảng điện toán đám mây hồi tháng 10. Trước sự gia tăng quá mạnh mẽ của Bitcoin, nhiều ngân hàng trung ương cũng đã vào cuộc và nghiên cứu sâu về công nghệ này.
BƯỚC ĐỘT PHÁ MỚI TRONG NGÀNH BẤT ĐỘNG SẢN CHIA SẺ, Xu thế Chia sẻ – Minh bạch – An toàn.
Ứng dụng (app) chia sẻ bất động sản đầu tiên trên thế giới sử dụng nền tảng công nghệ blockchain để giao dịch - mua bán, thuê mua bất động sản.
Ứng dụng công nghệ trong việc kết nối, chia sẻ các sản phẩm bất động sản: thuê, mua quyền sử dụng,…
Chương 4. Blockchain 3.0: Các ứng dụng hiệu quả và phối hợp vượt ra khỏi tiền tệ, kinh tế và thị trường
Blockchain không phải cho mọi tình huống, hoàn cảnh
Mặc dù có nhiều ứng dụng thú vị của công nghệ Blockchain, một trong những kỹ năng quan trọng nhất trong ngành công nghiệp đang phát triển là đánh giá xem nó đang ở vị trí nào và có thích hợp để sử dụng các mô hình tiền điện tử và Blockchain hay không.
Xem thêm: Blockchain – Khởi nguồn của một nền kinh tế mới: Chương 4 – Blockchain 3.0 (Phần 5)
Chúng ta cùng đi tìm hiểu xem Ấn Độ đã ra những chính sách lớn nào cho nền công nghệ Blockchain và AI như thế nào, tương lai của nó sẽ ra sao qua bài viết dưới đây. Bang Tamil Nadu của Ấn Độ được cho là đang thực hiện chính sách cấp nhà nước cho công nghệ Blockchain và trí tuệ nhân tạo (AI).
Xem thêm: Ấn Độ ra chính sách lớn cho nền tảng công nghệ Blockchain

Dapp, DAO, DAC, và DAS: Các hợp đồng thông minh tự trị ngày càng gia tăng
Bây giờ chúng ta có thể thấy một quỹ đạo tiến triển. Các lớp đầu tiên của các ứng dụng blockchain là các giao dịch tiền tệ; sau đó là tất cả các hình thức giao dịch tài chính; sau đó là tài sản thông minh, khởi tạo tất cả các tài sản hữu hình (nhà, xe) và tài sản vô hình (sở hữu trí tuệ) trở thành tài sản kỹ thuật số;
Hầu hết người dùng trực tuyến đều đã từng gặp rắc rối với PayPal hoặc hệ thống thanh toán số khác. Hãy tưởng tượng rằng bạn đang cố gắng rút tiền mà ai đó đã gửi cho bạn, và phát hiện ra bạn đã bị chặn khỏi dịch vụ đó mà không hề biết lý do tại sao. Hoặc có thể bạn phát hiện ra rằng phí có thể khá shock khi bạn bắt đầu sử dụng các dịch vụ mở rộng. Và, điều nhức nhối nhất: PayPal không chấp nhận tiền điện tử.
Ở phần 1 “Sự bùng nổ của social media và xu hướng marketing mới”, chúng ta đã tìm hiểu về social media và xu hướng marketing tập trung vào social media trong thời đại công nghệ phát triển. Tiếp theo của chủ đề bài viết, chúng ta sẽ tìm hiểu về tác động của Big data và lợi ích của nó đến social media marketing.
Xem thêm: TÁC ĐỘNG BIG DATA ĐẾN XU HƯỚNG SOCIAL MEDIA MARKETING
KHI MỘT CHUYÊN GIA PHÂN TÍCH DỮ LIỆU NHẬN ĐƯỢC YÊU CẦU TỪ CÁC PHÒNG BAN, BỘ PHẬN HAY LÃNH ĐẠO CÔNG TY, CHUYÊN GIA ẤY CÓ THỂ NHẢY VÀO PHÂN TÍCH NGHIÊN CỨU NGAY VẤN ĐỀ. NGƯỜI LÀM PHÂN TÍCH DỮ LIỆU SẼ MONG MUỐN TỪ YÊU CẦU ĐƠN GIẢN BAN ĐẦU SẼ TÌM RA PHÁT HIỆN TUYỆT VỜI, ĐƯA RA ĐƯỢC CÁC ĐỀ XUẤT HAY NHẤT ĐỂ ÁP DỤNG CHO CÔNG TY. NHƯNG THỰC TẾ THƯỜNG KHÔNG THUẬN LỢI NHƯ VẬY.
Xem thêm: Các bước chuẩn bị cho một dự án phân tích dữ liệu thành công!
Trở lại với chủ đề bài viết về thuật toán cây quyết định, ở bài viết trước đã giới thiệu đến các bạn tổng quan thế nào là Decision Tree, các công thức quan trọng để xác định cách phân nhánh tối ưu hay nói cách khác là đem lại kết quả phân loại (classification) chính xác dựa trên các thuộc tính dữ liệu và đặc biệt là thuật toán CART (classification and regression tree) sử dụng công thức “Goodness of Split”.
Xem thêm: THUẬT TOÁN CÂY QUYẾT ĐỊNH (P.2): CART (GINI INDEX)
Big Data có thể tạo ra các phương pháp tiếp cận dựa trên dữ liệu sáng tạo để dạy học sinh. Ở nhiều nước, việc ứng dụng Big Data trong trường học và cao đẳng đã dần trở nên phổ biến. Nhưng các nước đang phát triển cũng bắt đầu nghiên cứu để ứng dụng trong các hoạt động giảng dạy.
Quay trở lại với chủ đề về dữ liệu khách hàng, ở bài viết phần 1 và phần 2, đã giới thiệu đến các bạn những khái niệm về phân tích dữ liệu khách hàng, loại dữ liệu khách hàng có thể thu thập, và lợi ích, cũng như mục đích của quá trình Customer data analytics. Trong phần 3 lần này, chúng tôi sẽ cung cấp những giải pháp hỗ trợ các công ty khai thác nguồn dữ liệu khách hàng của họ sao cho hiệu quả nhất.
Xem thêm: TỔNG QUAN VỀ CUSTOMER DATA (P.3) GIẢI PHÁP KHAI THÁC CUSTOMER DATA HIỆU QUẢ
Tầm quan trọng của Big Data (Dữ liệu lớn) và sự nhận thức về giá trị của nó giảm dần, nhiều công ty đầu tư vào lĩnh vực này nhưng không đem lại kỳ vọng, và kết quả tốt lợi. Nguyên nhân do nhu cầu và tính chất phức tạp của hệ thống công nghệ kỹ thuật phải xây dựng, bảo trì, chi phí lại cao, thiếu nguồn nhân lực có chuyên môn sâu, và kỹ năng về lĩnh vực Data Science hay Data Analytics,…
Quyển sách mới ra “hiểu số để tăng số – Sexy little number” của Dimitrix Maex & Paul B.Brown đưa ra một góc nhìn tổng hợp trong việc sử dụng số liệu để thực hiện tiếp thị marketing trong thời đại công nghiệp số hoá, dữ liệu lớn. Trong bài này chúng tôi sẽ tóm tắt 1 số ý chính từ quyển sách cho bạn không có thời gian đọc hết quyển sách này.
Big data là gì? Công nghệ dữ liệu lớn là gì? Phân tích dữ liệu lớn là gì? Mang lại lợi ích như thế nào? Ứng dụng của Big Data trong thời đại công nghệ 4.0 là gì?
Các công ty công nghệ lớn hiện nay tại sao lại cần và ứng dụng Big Data nhiều đến vậy? Những cơ hội và thách thức khi ứng dụng Big Data là gì?
Hẳn là bạn đã từng giật mình khi bạn tìm kiếm thông tin nào đó trên Google. Mua sắm ở các trang thương mại trực tuyến và nhận thấy các trang này.
Xem thêm: Big Data công nghệ biến “sắt” thành mỏ “vàng”, Cơ hội và thách thức
Dữ liệu khách hàng hay Customer data được coi là tài sản, nguồn thông tin vô giá đối với mọi công ty thuộc nhiều lĩnh vực kinh doanh khác nhau. Việc triển khai các quy trình khai thác, dự án nghiên cứu, phân tích Customer data với mục đích tìm hiểu, nắm bắt mong muốn, nhu cầu thầm kín của khách hàng, và chuyển nó thành những giá trị cụ thể thông qua từng chiến lược, kế hoạch hoạt động chính là chìa khóa cạnh tranh của mỗi tổ chức ngày nay.
Xem thêm: TỔNG QUAN VỀ CUSTOMER DATA (P.1) – DỮ LIỆU KHÁCH HÀNG LÀ GÌ?
Trở lại với chủ đề Data security, bảo mật dữ liệu, ở phần 1 bài viết trước chúng ta đã cùng nhau tìm hiểu về thực trạng Data security trên toàn cầu thông qua bàn luận những số liệu từ các báo cáo, nghiên cứu của Verizon và IBM về Data breach (xâm phạm, đánh cắp, rò rỉ dữ liệu) tại những công ty, tổ chức đến từ nhiều quốc gia khác nhau; cũng như tìm hiểu tổng quan về Data security như khái niệm, lợi ích, thách thức.
Xem thêm: GIẢI PHÁP CẢI THIỆN BẢO MẬT DỮ LIỆU – DATA SECURITY
Trở lại với chủ đề về Data mining, ở phần 1 đã giới thiệu đến các bạn về khái niệm, tầm quan trọng, lợi ích chính và thách thức của Data mining, tiếp tục với phần 2, sẽ đi vào phân tích các ứng dụng của Data mining trong các lĩnh vực một cách chi tiết hơn. Nhưng trước tiên chúng ta cùng điểm qua các loại thông tin và loại dữ liệu được thu thập và phân tích bằng các công cụ Data mining.
Xem thêm: TỔNG QUAN VỀ DATA MINING (P2): ỨNG DỤNG TRONG CÁC LĨNH VỰC
Hội thảo Quốc tế về Thống kê Du lịch do Liên Hợp Quốc (UN) tổ chức vào cuối tháng 6, 2017 tại Manilla, Phillippines đã nhấn mạnh tới cách các thành phố sử dụng công nghệ Dữ liệu lớn (Big Data) để quản lý du lịch tốt hơn.
1. Xu hướng nghề nghiệp trong tương lai
Hiện tại, chúng ta đang sống trong giai đoạn đầu của thời kỳ cách mạng công nghiệp lần thứ 4. Triết lý của cuộc cách mạng công nghiệp 4.0 là chúng ta phải sử dụng công nghệ thông tin để tăng được năng suất lao động, từ đó tiết kiệm được chi phí, mang lại lợi ích cho người tiêu dùng.
Xem thêm: CHUYÊN GIA PHÂN TÍCH DỮ LIỆU – SỰ THÀNH CÔNG TRONG TƯƠNG LAI
Một trong những xu hướng phát triển cùng với thời đại đó chính là việc áp dụng phân tích dữ liệu Big data trong doanh nghiệp. Dưới đây là một số ứng dụng của Big data được nhiều doanh nghiệp lớn áp dụng. Từ đó rút ra bài học kinh nghiệm cho các doanh nghiệp Việt Nam, khi có thể còn đang chật vật với việc phân tích dữ liệu.
Xem thêm: Ứng dụng của Big Data và bài học cho những doanh nghiệp Việt Nam hiện nay
Nếu các bạn có theo dõi những bài viết của chúng tôi về Data management (quản lý dữ liệu) và Data quality (chất lượng dữ liệu), thì chắc cũng biết tầm quan trọng của quá trình Data security; sự ra đời của những bộ luật, điều luật về bảo mật thông tin, dữ liệu như GDPR tại châu Âu, luật An ninh Mạng ở nước ta; đặc biệt là xu hướng khách hàng đang ngày càng quan tâm hơn về tính minh bạch trong việc sử dụng, và khả năng bảo vệ nguồn dữ liệu, thông tin cá nhân của họ tại các công ty.
Thương mại điện tử không chỉ tận hưởng những lợi ích của việc điều hành trực tuyến mà còn phải đối mặt với nhiều thách thức để đạt được các mục tiêu kinh doanh. Lý do là bởi các doanh nghiệp dù là nhỏ hay lớn, khi đã tham gia vào thị trường này đều cần đầu tư mạnh để cải tiến công nghệ.
Dịch vụ dữ liệu chính xác, tin cậy , đúng mục tiêu , đúng nhu cầu cho lĩnh vực Y tế, Dược, Thực phẩm chức năng, Chăm Sóc Sức khỏe...
Xem thêm: Dịch vụ và giải pháp Big Data cho lĩnh vực Y - Dược - Chăm Sóc Sức Khỏe
Dữ liệu (Data) được coi là biểu tượng hoặc dấu hiệu, đại diện cho các kích thích hoặc tín hiệu, sự kiện đã xảy ra được ghi nhận bởi tác nhân quan sát (sensor, người hay thiết bị thu thập data chuyên dụng)
Business Intelligenc (BI) hay Data Analytics – phân tích dữ liệu từ lâu đã trở thành các công cụ hữu ích hỗ trợ các tổ chức, công ty trong quá trình hoạt động và phát triển. Ở bài viết lần này, sẽ giới thiệu đến các bạn các lợi ích của phân tích dữ liệu trong kinh doanh, nhưng trước tiên ta cùng phân biệt rõ 2 khái niệm được nêu ở trên mà nhiều người thường nhầm lẫn.
Nếu các bạn hoạt động, làm việc trong lĩnh vực thương mại điện tử (E-commerce) hay digital marketing chắc biết đến Data management platform (DMP) còn được gọi là nền tảng quản lý dữ liệu tập trung.
Xem thêm: TẦM QUAN TRỌNG CỦA QUẢN LÝ DỮ LIỆU (DATA MANAGEMENT) (P1)
Như vậy chúng ta đã cùng nhau đi qua 4 phần của series bài viết về thuật toán Decision trees hay còn gọi là thuật toán cây quyết định. Chúng ta đã làm quen với định nghĩa tổng quát, các dạng cây quyết định bao gồm phân 2 nhánh – CART, và nhiều nhánh C4.5 sử dụng các công thức Goodness of Split, Gini Index, Entropy kết hợp với Information Gain, hay Gain Ratio để xây dựng mô hình áp dụng cho biến mục tiêu là biến định tính, và chúng ta cũng tiếp cận qua một số cách thức để tăng độ hiệu quả của mô hình, tránh trường hợp Overfitting hay Underfitting như Stopping rule và Pruning method, và nhìn lại những ưu điểm, khuyết điểm một cách tổng thể về Decision Trees.
Xem thêm: THUẬT TOÁN CÂY QUYẾT ĐỊNH (P.5) REGRESSION TREE VÀ DECISION RULES
Big Data ngày càng được sử dụng để tối ưu hóa các quy trình kinh doanh. Các nhà bán lẻ có thể tối ưu hóa cổ phiếu của họ dựa trên dự đoán. Từ dữ liệu truyền thông xã hội, xu hướng tìm kiếm trên web và dự báo thời tiết.
Xem thêm: Giải Pháp Big Data Tối ưu hóa quy trình kinh doanh
Ở bài viết trước, chúng tôi đã giới thiệu sơ lược về Chatbot về khái niệm cũng như cách thức vận hành đơn giản nhất của Chatbot. Lần này, chúng tôi sẽ cung cấp cho các bạn về các phương pháp, thuật toán là cơ sở hoạt động của Chatbot hay nói cách khác Chatbot hoạt động ra sao?
Xem thêm: TỔNG QUAN VỀ CHATBOT (PHẦN 2): CHATBOT HOẠT ĐỘNG NHƯ THẾ NÀO?
Trở lại với chủ đề về các thuật toán cây quyết định Decision trees, như vậy qua các bài viết trước chúng ta đã tìm hiểu về tổng quan thuật toán cây quyết định là gì, làm quen với các dạng thuật toán CART (phân 2 nhánh) sử dụng công thức Goodness of Split, Gini Index và C4.5 (phân nhiều hơn 2 nhánh) sử dụng công thức Entropy kết hợp với Information gain.
Xem thêm: THUẬT TOÁN CÂY QUYẾT ĐỊNH (P.4): ƯU & KHUYẾT ĐIỂM, STOPPING & PRUNING METHOD
Big Data mang lại cơ hội cho lĩnh vực bán lẻ bằng cách phân tích thị trường cạnh tranh và sự quan tâm của khách hàng. Nó giúp xác định hành trình trải nghiệm, xu hướng mua sắm và sự hài lòng của khách hàng bằng cách thu thập dữ liệu đa dạng.
Một câu nói nổi tiếng của William Glasser, chuyên gia tâm thân học Mỹ:
Chúng ta học….
10% của những gì ta đọc được
20% của những gì ta nghe thấy
30% của những gì ta nhìn thấy
50% của những gì ta nghe và nhìn thấy
70% của những gì ta thảo luận
80% của những gì ta trải nghiệm
95% của những điều ta dạy người khác
Việc quyết định phương pháp đầu tư kinh doanh của công ty là một vấn đề khá phức tạp, đặc biệt khi bạn không chắc chắn những yếu tố nào cần dựa vào chỉ tiêu doanh thu, đánh giá của khách hàng, phản hồi nhóm hoặc thậm chí là cảm nhận từ chính bạn.

Xem thêm: Những điều cần biết về phân tích dữ liệu đối với kinh doanh
Phân tích dự báo hay còn gọi Predictive analytics là một trong những phương pháp, kỹ thuật phân tích dữ liệu phổ biến và quan trọng nhất ngày nay. Đây là công cụ hữu ích để những nhà khoa học, chuyên gia hoạt động ở lĩnh vực Data science có cái nhìn chi tiết về đối tượng nghiên cứu, khám phá các mối liên hệ, đưa ra những phán đoán về đối tượng nghiên cứu ở tương lai chứ không chỉ dừng lại tại quá trình mô tả.
Xem thêm: TỔNG QUAN VỀ PREDICTIVE ANALYTICS (PHÂN TÍCH DỰ BÁO) (PHẦN 1)
1. Big data là gì? Nó khác gì với việc lưu giữ và phân tích data truyền thống ?
Tại Việt Nam, kho dữ liệu còn rất hạn chế, muốn nghiên cứu phải đòi hỏi nền tảng công nghệ rất lớn. Tuy nhiên, để phục vụ người dân tốt hơn thì việc xây dựng dữ liệu lớn (big data) là việc cần thiết, phải đẩy mạnh triển khai trong thời gian tới.
Nhiều doanh nghiệp Việt Nam chưa xây dựng big data trong hoạt động sản xuất, kinh doanh và quản trị doanh nghiệp

Big Data được ứng dụng trong rất nhiều lĩnh vực khác nhau như đã giới thiệu ở bài viết “Big Data – Tên gọi gợi lên khái niệm”. Bài viết tiếp theo dưới đây sẽ nói chi tiết hơn về các ứng dụng của Big data trong từng trường hợp cụ thể, và trong từng lĩnh vực đặc thù. Qua đó chúng ta sẽ thấy được tầm quan trọng trong việc thu thập và phân tích dữ liệu Big data.
Giới thiệu về K – nearest neighbor (KNN)
Ở các bài viết trước đã giới thiệu đến các bạn một cách tổng quan những chủ đề về Data mining (Khai phá dữ liệu), Predictive analytics (Phân tích dự báo), Statistics (Thống kê) bao gồm các khái niệm quan trọng, kỹ thuật phân tích và ứng dụng, lợi ích trong các lĩnh vực khác nhau.
Xem thêm: THUẬT TOÁN KNN VÀ VÍ DỤ ĐƠN GIẢN TRONG NGÀNH NGÂN HÀNG
Trong hệ thống ngân hàng, Big Data đã và đang được ứng dụng hiệu quả từ cách đây khá lâu. Big Data thể hiện vai trò không thể thay thế của mình trong mọi hoạt động của ngân hàng: từ thu tiền mặt đến quản lý tài chính. Các ứng dụng Big Data đã giúp giảm bớt rắc rối của khách hàng và tạo doanh thu cho các ngân hàng.
Trong ngành công nghiệp du lịch, dữ liệu lớn (hay còn gọi là Big data) là một trong những khái niệm quan trọng nhất để nắm bắt bởi hầu hết các doanh nghiệp khác đã sử dụng nó và gặt hái những phần thưởng.
Xem thêm: 5 bất ngờ mà dữ liệu lớn (Big Data) mang lại trong ngành du lịch
Ở 2 bài viết trước đã giới thiệu đến các bạn thuật toán Classification đầu tiên là KNN (K – nearest neighbor) và một số phương pháp đánh giá mô hình phân loại như Hold out, Cross validation, hay Confusion matrix, Lift, Gain chart, ROC/ AUC. Trở lại với chủ đề về những thuật toán phân loại trong Data mining, lần này chúng tôi và các bạn sẽ tìm hiểu về Decision Tree, thuật toán có thể nói là “nổi tiếng”, “phổ biến” mà bất kỳ ai hoạt động và làm việc trong lĩnh vực khoa học dữ liệu, hoặc phân tích dữ liệu đều phải biết đến.
Xem thêm: THUẬT TOÁN CÂY QUYẾT ĐỊNH (P.1) : CLASSIFICATION & REGRESSION TREE (CART)
Phân tích dữ liệu dự đoán đang nhanh chóng trở thành động lực thúc đẩy tiếp thị hiện đại. Phân tích dữ liệu dự đoán là quá trình sử dụng dữ liệu lịch sử và hiện tại kết hợp với học máy để dự báo một số kết quả nhất định.
Xem thêm: 6 cách phân tích dữ liệu dự đoán đang định hình lại marketing
Ứng dụng Big Data trong quản lý doanh thu
Ngành công nghiệp du lịch và lữ hành đang đối mặt với thách thức bán đúng sản phẩm đến đúng đối tượng khách hàng vào thời điểm chính xác và giữ đúng giá ở đúng kênh. Tất cả điều này đòi hỏi dữ liệu nội bộ lẫn bên ngoài. Dữ liệu nội bộ như kỳ vọng của khách hàng trong quá khứ, tỷ lệ hết vé, doanh thu phòng và tình trạng đặt vé hiện tại. Dữ liệu bên ngoài gồm sự kiện, thời tiết, những chuyến bay và những kỳ nghỉ.
Trở lại với chủ đề về các xu hướng Big Data sẽ đi đầu trong năm 2019, ở phần 1, Big Data Uni đã đề cập về sự phát triển và thay đổi của Internet of Things (IOT), trí tuệ nhân tạo (Artificial Intelligence – AI), Machine Learning (ML) tác động như thế nào đến lĩnh vực Big Data, và một số dự báo về thị trường Big Data. Phần 2 bài viết, chúng tôi sẽ đề cập chi tiết về các xu hướng của những công cụ, cách thức hỗ trợ cho việc khai thác, tiếp cận Big Data, cùng với các vấn đề, thách thức mới trong lĩnh vực Big Data.
Xem thêm: TOP CÁC XU HƯỚNG BIG DATA SẼ ĐI ĐẦU TRONG NĂM 2019 (PHẦN 2)
Những doanh nghiệp đầu ngành có khả năng tiếp cận nhiều dữ liệu hơn bao giờ hết.
Nhưng dữ liệu tự thân không tạo ra hiểu biết sâu sắc về doanh nghiệp, khách hàng hay hoạt động kinh doanh.
Xem thêm: Hướng dẫn tổng quan về Kinh Doanh Thông Minh – Business Intelligence – BI
Trở lại với chủ đề bài viết về phân tích dự báo – Predictive analytics, ở phần 1, đã giới thiệu đến các bạn thế nào là phân tích dự báo, phân biệt nó với Data analytics, Descriptive analytics (phân tích mô tả) và Prescriptive analytics (phân tích đề xuất), còn phần 2 lần này chúng tôi sẽ đi vào trình bày một cách tổng quan về bản chất, cách thức vận hành, quy trình, và các thuật toán hay kỹ thuật phân tích được sử dụng trong Predictive analytics.
Xem thêm: TỔNG QUAN VỀ PREDICTIVE ANALYTICS (PHÂN TÍCH DỰ BÁO) (PHẦN 2)
Khoa học phân tích dữ liệu là một nhánh rẽ quan trọng trong lĩnh vực công nghệ thông tin. Nó sớm bộc lộ những tiềm lực quan trọng thúc đẩy sự phát triển của thế giới. Với sự phát triển nhanh chóng và lan rộng của mình, ngành Khoa học Dữ liệu đặc biệt thu hút sự quan tâm của các chuyên gia Việt Nam và cả trên khắp thế giới.
Xem thêm: Khoa học phân tích dữ liệu – Góc nhìn từ Việt Nam và Thế Giới
Hacker tối qua đã tung thông tin nghi là của hai triệu khách hàng từ một ngân hàng Việt Nam lên Raidforums, một website chuyên mua bán dữ liệu.
Các thông tin bị rò rỉ bao gồm tên đầy đủ, số chứng minh thư, số điện thoại, địa chỉ nhà, ngày tháng năm sinh, giới tính, email và nghề nghiệp.
Marketing là chìa khóa để cánh cửa thành công cho bất kỳ doanh nghiệp nào. Giờ đây, không chỉ các công ty lớn có thể điều hành các hoạt động quảng cáo tiếp thị mà cả các doanh nhân nhỏ cũng có thể chạy các chiến dịch quảng cáo thành công trên các nền tảng truyền thông xã hội và quảng bá sản phẩm của họ.
Đa số các bạn nhảy vào phân tích dữ liệu ngay, trước khi bạn lên kế hoạch và mục tiêu của dự án phân tích dữ liệu. Và cũng tương tự như vậy, bạn có thể nhảy vào làm slide cho một buổi thuyết trình trong môi trường kinh doanh trước khi bạn lên kế hoạch cho thuyết trình đó. Và tất nhiên bạn sẽ kết quả là tốn rất nhiều thời gian cho slide mà không đạt được kết quả tốt nhất.
Xem thêm: Phương pháp thuyết trình đạt hiệu quả trong môi trường kinh doanh!
Để thành công và phát triển, một công ty cần phải có khả năng đạt được, giữ chân, thỏa mãn và thu hút càng nhiều khách hàng càng tốt. Hiểu rõ hơn về khách hàng thông qua phân tích dữ liệu khách hàng vừa là công việc, nhiệm vụ rất quan trọng vừa là cơ sở để đánh giá công ty hoạt động hiệu quả như thế nào.
Xem thêm: TỔNG QUAN VỀ CUSTOMER DATA (P.2) LỢI ÍCH CỦA DỮ LIỆU KHÁCH HÀNG
- Giải pháp Big data cho lĩnh vực Điện Toán Đám Mây
- Giải pháp Big data trong Quản Lý Thiên Tai
- Giải pháp Big data cho lĩnh vực Truyền Thông và Giải Trí
- Giải pháp Big data giúp hiểu Khách Hàng Mục Tiêu
- Dữ liệu lớn Big data và Tương lai của ngành Dược?
- THUẬT TOÁN CÂY QUYẾT ĐỊNH (P.3): C4.5 (ENTROPY)
- Bùng nỗ digital healthcare, big data trong lĩnh vực y tế đang đến rất gần
- Chọn nghề phân tích dữ liệu?
- TỔNG QUAN VỀ DATA MINING (P1): KHAI PHÁ DỮ LIỆU LÀ GÌ?
- Dữ liệu lớn góp phần tăng giá trị lớn cho ngành chăm sóc sức khỏe
- Tìm hiểu kỹ năng phân tích dữ liệu trước khi lập báo cáo trên Excel
- CÔNG TY ĐỊNH HƯỚNG DỮ LIỆU (DATA – DRIVEN ENTERPRISE) (PHẦN 1)
Nhiều người quan tâm
- Các nền tảng công nghệ hỗ trợ cho KHỞI NGHIỆP và CHUYỂN ĐỔI SỐ tiết kiệm, hiệu quả,...
- 5 lý do sở hữu một ứng dụng di động là cần thiết đối với doanh nghiệp vừa và nhỏ
- Top danh sách hơn 300 website submit PR cao
- Hệ thống điều hành, tìm gọi và quản lý xe sử dụng công nghệ mới
- Khắc phục lỗi đăng nhập Windows 10, không thể login vào Windows 10
- Mạng xã hội là gì? Hiểu đầy đủ nhất về mạng xã hội
- 100 Website đặt backlink miễn phí chất lượng
- Danh sách 6.500 website mua bán rao vặt, tốt để quảng cáo, SEO và tạo backlink
- Gần 700 forum, trang rao vặt giúp tăng độ phủ quảng cáo, SEO, Backlink
- IoT là gì? ứng dụng của IoT trong cuộc sống hiện đại
- Ứng dụng bán hàng trên smartphone, smart TV, mạng xã hội...
- Hướng dẫn cài ứng dụng, phần mềm cho Android trực tiếp bằng tập tin APK
Giải pháp cho doanh nghiệp
- B2B CLOUD: Giải pháp tối ưu cho doanh nghiệp và start-up
- VIP ECOM Hệ Sinh Thái Thương Mại Điện Tử, Tài Chính, Tiền Điện Tử, Đa Cấp...
- Hệ thống chấm công từ xa thông minh SAttendance và hệ thống định vị STracking
- Giải pháp cho dịch vụ bác sĩ gia đình
- SChat là lựa chọn tuyệt vời nhất để trò chuyện và chăm sóc khách hàng của bạn
- Nhà thông minh, tích hợp vi mạch
- Thông tin Du Lịch có ngay trong túi mọi người
- Hệ thống đánh giá đại lý, chi nhánh, cửa hàng SKPI ( hệ thống đánh giá thông minh trên smartphone và tablet)
- SGo không còn xe trống chiều về
- Bác sĩ gia đình, chăm sóc sức khỏe tại nhà
- Hệ thống giới thiệu sản phẩm, dịch vụ thông minh SCatalog và SBrochure ( hệ thống catalog và brochre thông minh trên smartphone và tablet)
- Tối ưu giải pháp cho các công ty bảo hiểm
Giải pháp cho khởi nghiệp
- Chat, nhắn tin, gọi điện, đàm thoại
- Ứng dụng mobile để marketing và phân phối rượu vang
- Hệ thống order chuyên nghiệp cho quán ăn, cafe, nhà hàng,...
- Điều hành taxi, ứng dụng gọi xe trên smartphone
- App giúp việc và dịch vụ tại nhà, Tư vấn, xây dựng, chuyển giao, đồng hành cùng quý vị triển khai
- Ứng dụng quản lý garage trên smartphone và tablet
- Ứng dụng công nghệ vào giáo dục (Edu Tech)
- Mua bán rau củ quả, nông sản trên smrtphone và tablet
- Quản lý cửa hàng, ki ốt trên smartphone và tablet
- Gọi GAS chỉ với một nút bấm trên smartphone
- Giải pháp Blockchain và câu chuyện minh bạch hóa tiền công đức
- Đặt món dễ dàng
App hữu ích
- app SOS, gọi khẩn đường dây nóng khi gặp nạn, cháy nổ, nguy hiểm tính mạng, cấp cứu, cứu hộ,...tại Việt Nam
- Tra cứu thông tin doanh nghiệp tại Việt Nam
- Kiểm tra thực phẩm VietGAP trên smartphone
- Quản lý chi tiêu, thu/chi kinh doanh, tài chính cá nhân,... trên smartphone
- Tra cứu thông tin đăng kiểm cơ giới
Thế hệ số
- Hệ thống lái xe thông minh hoạt động như nào, #oto
- Những sản phẩm công nghệ có trong #smartphone
- Cấu tạo của tai nghe Bluetooth, #smartphone
- DVMS.VN
- Cách hoạt động của sợi quang, #DVMS
- Cách hoạt động của con chip, #DVMS
- 4G to 5G on #smartphone, #DVMS
- How to bypass #smartphone password, #DVMS
- Recover gmail password easily with a few simple steps on smartphone, #DVMS
- Đèn năng lượng mặt trời, cách lắm đặt đúng cách, tiết kiệm, dùng lâu
- Hướng dẫn cài đặt yahoo,outlook,hotmail... không cần cài thêm app, DVMS
- Cách cho hiện thư mục bị virus ẩn đi, #DVMS
- Cách chặn tự động cuộc gọi từ người là , DVMS
- Cách chỉnh sửa video ngắn trên facebook, DVMS
- Cách like fanpage mới, DVMS