Tập đoàn Ngân hàng ANZ đã công bố một giải pháp blockchain nhằm nâng cao hiệu quả trong ngành bảo hiểm.
Chắc bạn đã một lần từng nghe, hoặc biết đến Chatbot khi đã vô tình bắt gặp nó được thể hiện ở các trang mạng xã hội (social media platform) hay trên các ứng dụng mua sắm trực tuyến (online shopping application). Chatbot hiện đang là công cụ hỗ trợ đắc lực dành cho các công ty, tổ chức trong việc phát triển, duy trì và cải thiện mối quan hệ với khách hàng (customer relationship management).

Xem thêm: TỔNG QUAN VỀ CHATBOT (PHẦN 1) CHATBOT LÀ GÌ?
Ở các bài viết trước, chúng tôi đã giới thiệu về khái niệm Chatbot và cách thức vận hành cũng như những phương pháp áp dụng cho quá trình phát triển Chatbot. Ở bài viết lần này, chúng tôi sẽ trình bày các lợi ích của Chatbot đem lại cho khách hàng và các công ty hoạt động kinh doanh.

Xem thêm: TỔNG QUAN VỀ CHATBOT (PHẦN 3): LỢI ÍCH CỦA CHATBOT
Như đã giới thiệu ở bài viết trước “Big Data – thành quả của cách mạng công nghệ 4.0” về nguồn gốc của Big Data, ở bài viết này chúng ta sẽ bàn luận sâu hơn về khái niệm Big Data.

Xem thêm: BIG DATA LÀ GÌ? – MỘT KHÁI NIỆM CỰC KỲ ĐƠN GIẢN
Trở lại với chủ đề về Data mining, ở phần 1 đã giới thiệu đến các bạn về khái niệm, tầm quan trọng, lợi ích chính và thách thức của Data mining, tiếp tục với phần 2, sẽ đi vào phân tích các ứng dụng của Data mining trong các lĩnh vực một cách chi tiết hơn. Nhưng trước tiên chúng ta cùng điểm qua các loại thông tin và loại dữ liệu được thu thập và phân tích bằng các công cụ Data mining.

Xem thêm: TỔNG QUAN VỀ DATA MINING (P2): ỨNG DỤNG TRONG CÁC LĨNH VỰC
Nếu các bạn có theo dõi những bài viết của chúng tôi về Data management (quản lý dữ liệu) và Data quality (chất lượng dữ liệu), thì chắc cũng biết tầm quan trọng của quá trình Data security; sự ra đời của những bộ luật, điều luật về bảo mật thông tin, dữ liệu như GDPR tại châu Âu, luật An ninh Mạng ở nước ta; đặc biệt là xu hướng khách hàng đang ngày càng quan tâm hơn về tính minh bạch trong việc sử dụng, và khả năng bảo vệ nguồn dữ liệu, thông tin cá nhân của họ tại các công ty.

Xem thêm: THỰC TRẠNG DATA SECURITY TRÊN TOÀN CẦU
1. Xu hướng nghề nghiệp trong tương lai
Hiện tại, chúng ta đang sống trong giai đoạn đầu của thời kỳ cách mạng công nghiệp lần thứ 4. Triết lý của cuộc cách mạng công nghiệp 4.0 là chúng ta phải sử dụng công nghệ thông tin để tăng được năng suất lao động, từ đó tiết kiệm được chi phí, mang lại lợi ích cho người tiêu dùng.

Xem thêm: CHUYÊN GIA PHÂN TÍCH DỮ LIỆU – SỰ THÀNH CÔNG TRONG TƯƠNG LAI
Đa số các bạn nhảy vào phân tích dữ liệu ngay, trước khi bạn lên kế hoạch và mục tiêu của dự án phân tích dữ liệu. Và cũng tương tự như vậy, bạn có thể nhảy vào làm slide cho một buổi thuyết trình trong môi trường kinh doanh trước khi bạn lên kế hoạch cho thuyết trình đó. Và tất nhiên bạn sẽ kết quả là tốn rất nhiều thời gian cho slide mà không đạt được kết quả tốt nhất.

Xem thêm: Phương pháp thuyết trình đạt hiệu quả trong môi trường kinh doanh!
Chủ đề về Big Data tác động đến social media marketing (tiếp thị qua mạng xã hội), mà cung cấp đến các bạn sẽ được chia thành 2 phần
- Phần 1: Sự “bùng nổ” của social media và xu hướng marketing mới
- Phần 2: Tác động của Big data đến xu hướng social media marketing

Xem thêm: SỰ “BÙNG NỔ” CỦA SOCIAL MEDIA VÀ XU HƯỚNG MARKETING MỚI
KHI MỘT CHUYÊN GIA PHÂN TÍCH DỮ LIỆU NHẬN ĐƯỢC YÊU CẦU TỪ CÁC PHÒNG BAN, BỘ PHẬN HAY LÃNH ĐẠO CÔNG TY, CHUYÊN GIA ẤY CÓ THỂ NHẢY VÀO PHÂN TÍCH NGHIÊN CỨU NGAY VẤN ĐỀ. NGƯỜI LÀM PHÂN TÍCH DỮ LIỆU SẼ MONG MUỐN TỪ YÊU CẦU ĐƠN GIẢN BAN ĐẦU SẼ TÌM RA PHÁT HIỆN TUYỆT VỜI, ĐƯA RA ĐƯỢC CÁC ĐỀ XUẤT HAY NHẤT ĐỂ ÁP DỤNG CHO CÔNG TY. NHƯNG THỰC TẾ THƯỜNG KHÔNG THUẬN LỢI NHƯ VẬY.

Xem thêm: Các bước chuẩn bị cho một dự án phân tích dữ liệu thành công!
Tất cả chúng ta đang đều sống và làm việc trong thời đại công nghệ hiện đại nó đang làm thay đổi toàn bộ cục diện của tất cả hầu hết các lĩnh vực kinh tế, xã hội, y tế, quốc phòng,..

Xem thêm: BIG DATA – THÀNH QUẢ CỦA CÁCH MẠNG CÔNG NGHỆ HIỆN ĐẠI
Như ta đã biết, hệ thống phân tích kinh doanh thông minh (BI) không chỉ là phần mềm. Để triển khai thành công hệ thống BI, doanh nghiệp cần phải có quy trình và cơ sở hạ tầng tốt bên cạnh việc lựa chọn đúng úng dụng phân tích kinh doanh thông minh (BI tools).

Xem thêm: Cách tốt nhất để thành công với hệ thống phân tích kinh doanh – BI (Business Intelligence)
Quay trở lại với chủ đề về Decision trees, thì ở 2 bài viết trước đã giới thiệu đến các bạn khái quát thế nào là thuật toán cây quyết định, bao gồm các thành phần, và một số công thức tính toán để lựa chọn các biến phân nhánh hay cách phân nhánh tối ưu, mục đích dự báo, phân loại, phân nhóm các đối tượng dữ liệu vào các nhóm, các lớp của biến mục tiêu sao cho chính xác nhất.

Xem thêm: THUẬT TOÁN CÂY QUYẾT ĐỊNH (P.3): C4.5 (ENTROPY)
Tầm quan trọng của Big Data (Dữ liệu lớn) và sự nhận thức về giá trị của nó giảm dần, nhiều công ty đầu tư vào lĩnh vực này nhưng không đem lại kỳ vọng, và kết quả tốt lợi. Nguyên nhân do nhu cầu và tính chất phức tạp của hệ thống công nghệ kỹ thuật phải xây dựng, bảo trì, chi phí lại cao, thiếu nguồn nhân lực có chuyên môn sâu, và kỹ năng về lĩnh vực Data Science hay Data Analytics,…

Xem thêm: TỔNG QUAN VỀ BIG DATA TRÊN TOÀN CẦU
Quyển sách mới ra “hiểu số để tăng số – Sexy little number” của Dimitrix Maex & Paul B.Brown đưa ra một góc nhìn tổng hợp trong việc sử dụng số liệu để thực hiện tiếp thị marketing trong thời đại công nghiệp số hoá, dữ liệu lớn. Trong bài này chúng tôi sẽ tóm tắt 1 số ý chính từ quyển sách cho bạn không có thời gian đọc hết quyển sách này.

Xem thêm: Sử dụng số liệu trong kinh doanh thời đại số
Quay trở lại với chủ đề về dữ liệu khách hàng, ở bài viết phần 1 và phần 2, đã giới thiệu đến các bạn những khái niệm về phân tích dữ liệu khách hàng, loại dữ liệu khách hàng có thể thu thập, và lợi ích, cũng như mục đích của quá trình Customer data analytics. Trong phần 3 lần này, chúng tôi sẽ cung cấp những giải pháp hỗ trợ các công ty khai thác nguồn dữ liệu khách hàng của họ sao cho hiệu quả nhất.

Xem thêm: TỔNG QUAN VỀ CUSTOMER DATA (P.3) GIẢI PHÁP KHAI THÁC CUSTOMER DATA HIỆU QUẢ
với khát vọng là công ty đi đầu trong lĩnh vực khai phá dữ liệu Big Data, và tư vấn chiến lược trong tương lai, sẵn sàng hỗ trợ, đồng hành cùng bạn – dù bạn là ai – trên con đường khai phá Big Data. Nhưng trước hết công ty giới thiệu các bước khai thác Big Data. Theo SAS, các bước khai phá Big Data bao gồm:

Xem thêm: THÁCH THỨC TRONG QUÁ TRÌNH KHAI THÁC DỮ LIỆU BIG DATA
Ở phần 1 bài viết cùng chủ đề, đã giới thiệu các khái niệm về Data quality, Data quality management; lợi ích; tầm quan trọng; và các tiêu chuẩn, tiêu chí đánh giá chất lượng dữ liệu. Mặc dù nhiều công ty, tổ chức hiện nay đã nhận thức được sự cần thiết của các nhiệm vụ trong Data quality, nhưng họ vẫn phải đối mặt với nhiều thách thức, khó khăn khác nhau dẫn đến việc thiết lập, và triển khai các giải pháp thích hợp càng được quan tâm hơn bao giờ hết.

Xem thêm: TỔNG QUAN VỀ DATA QUALITY – CHẤT LƯỢNG DỮ LIỆU (P2)
Phân tích dữ liệu dự đoán đang nhanh chóng trở thành động lực thúc đẩy tiếp thị hiện đại. Phân tích dữ liệu dự đoán là quá trình sử dụng dữ liệu lịch sử và hiện tại kết hợp với học máy để dự báo một số kết quả nhất định.

Xem thêm: 6 cách phân tích dữ liệu dự đoán đang định hình lại marketing
Big Data ngày càng được sử dụng để tối ưu hóa các quy trình kinh doanh. Các nhà bán lẻ có thể tối ưu hóa cổ phiếu của họ dựa trên dự đoán. Từ dữ liệu truyền thông xã hội, xu hướng tìm kiếm trên web và dự báo thời tiết.

Xem thêm: Giải Pháp Big Data Tối ưu hóa quy trình kinh doanh
Ứng dụng Big Data trong quản lý doanh thu
Ngành công nghiệp du lịch và lữ hành đang đối mặt với thách thức bán đúng sản phẩm đến đúng đối tượng khách hàng vào thời điểm chính xác và giữ đúng giá ở đúng kênh. Tất cả điều này đòi hỏi dữ liệu nội bộ lẫn bên ngoài. Dữ liệu nội bộ như kỳ vọng của khách hàng trong quá khứ, tỷ lệ hết vé, doanh thu phòng và tình trạng đặt vé hiện tại. Dữ liệu bên ngoài gồm sự kiện, thời tiết, những chuyến bay và những kỳ nghỉ.

Xem thêm: Ứng dụng Big Data trong ngành du lịch
Data visualization tạm được dịch là trực quan hóa dữ liệu, đây là phương pháp không chỉ là bước quan trọng của bất kỳ quy trình phân tích, hay khai phá dữ liệu mà nó còn là công cụ được sử dụng phổ biến và rộng rãi ở mọi tổ chức thuộc mọi lĩnh vực, hay bởi mỗi một ai trong chúng ta, với mục đích đơn giản là truyền đạt, trình bày một cách hiệu quả, đơn giản, thu hút những thông tin, dữ liệu đến người đọc, người xem.

Xem thêm: TỔNG QUAN VỀ DATA VISUALIZATION (TRỰC QUAN HÓA DỮ LIỆU)
Dữ liệu (Data) được coi là biểu tượng hoặc dấu hiệu, đại diện cho các kích thích hoặc tín hiệu, sự kiện đã xảy ra được ghi nhận bởi tác nhân quan sát (sensor, người hay thiết bị thu thập data chuyên dụng)

Xem thêm: Hiểu về thế giới từ dữ liệu như thế nào?
Trở lại với chủ đề bài viết về Data mining, ở 2 phần trước đã giới thiệu dến các bạn khái niệm, tầm quan trọng, lợi ích, thách thức và đặc biệt là ứng dụng của Data mining trong nhiều lĩnh vực khác nhau. Phần cuối của chủ đề Data mining lần này, sẽ phân tích về các quy trình, kỹ thuật và thuật toán của Data mining, hay tìm hiểu làm cách Data mining khai thác giá trị, những thông tin hữu ích từ dữ liệu?

Xem thêm: TỔNG QUAN VỀ DATA MINING (P3): QUÁ TRÌNH VÀ PHƯƠNG PHÁP
Trở lại với chủ đề về thống kê, ở phần trước chúng tôi đã giới thiệu đến các bạn các khái niệm về thống kê cũng như lợi ích và ứng dụng của nó, tiếp theo ở phần này, chúng tôi sẽ đề cập đến một mảng kiến thức quan trọng khác đó chính Descriptive statistics (thống kê mô tả)

Xem thêm: TỔNG QUAN VỀ STATISTICS: DESCRIPTIVE STATISTICS (THỐNG KÊ MÔ TẢ)
Marketing là chìa khóa để cánh cửa thành công cho bất kỳ doanh nghiệp nào. Giờ đây, không chỉ các công ty lớn có thể điều hành các hoạt động quảng cáo tiếp thị mà cả các doanh nhân nhỏ cũng có thể chạy các chiến dịch quảng cáo thành công trên các nền tảng truyền thông xã hội và quảng bá sản phẩm của họ.

Xem thêm: Giải pháp Big data cho lĩnh vực Marketing
Trở lại với chủ đề về các thuật toán cây quyết định Decision trees, như vậy qua các bài viết trước chúng ta đã tìm hiểu về tổng quan thuật toán cây quyết định là gì, làm quen với các dạng thuật toán CART (phân 2 nhánh) sử dụng công thức Goodness of Split, Gini Index và C4.5 (phân nhiều hơn 2 nhánh) sử dụng công thức Entropy kết hợp với Information gain.

Xem thêm: THUẬT TOÁN CÂY QUYẾT ĐỊNH (P.4): ƯU & KHUYẾT ĐIỂM, STOPPING & PRUNING METHOD
Big Data được ứng dụng trong rất nhiều lĩnh vực khác nhau như đã giới thiệu ở bài viết “Big Data – Tên gọi gợi lên khái niệm”. Bài viết tiếp theo dưới đây sẽ nói chi tiết hơn về các ứng dụng của Big data trong từng trường hợp cụ thể, và trong từng lĩnh vực đặc thù. Qua đó chúng ta sẽ thấy được tầm quan trọng trong việc thu thập và phân tích dữ liệu Big data.

Xem thêm: ỨNG DỤNG CỦA BIG DATA TRONG MỌI LĨNH VỰC
Hacker tối qua đã tung thông tin nghi là của hai triệu khách hàng từ một ngân hàng Việt Nam lên Raidforums, một website chuyên mua bán dữ liệu.
Các thông tin bị rò rỉ bao gồm tên đầy đủ, số chứng minh thư, số điện thoại, địa chỉ nhà, ngày tháng năm sinh, giới tính, email và nghề nghiệp.

Xem thêm: Hacker tung dữ liệu hai triệu người dùng ngân hàng lên mạng, kiểm tra nhanh xem có trong danh sách...
Nếu các bạn đã theo dõi các bài viết của Big Data Uni thì chắc cũng đã nắm được tổng quan về Big Data bao gồm khái niệm, lợi ích và ứng dụng của nó trong nhiều lĩnh vực khác nhau. Trong chủ đề bài viết lần này và sắp tới, chúng tôi sẽ không đề cập về những giá trị mà Big Data đem lại mà đi vào trọng tâm một trong những công cụ, quá trình quan trọng nhất đối với mỗi dự án Big Data đó chính là Data mining (hay còn gọi là khai phá dữ liệu).

Xem thêm: TỔNG QUAN VỀ DATA MINING (P1): KHAI PHÁ DỮ LIỆU LÀ GÌ?
Ở các phần trước trong chủ đề về Statistics (thống kê) đã giới thiệu đến các bạn các khái niệm, lợi ích, ứng dụng của thống kê, đặc biệt Descriptive statistics (thống kê mô tả), một trong 2 dạng cơ bản của Statistics. Trở lại với bài viết lần này chúng tôi sẽ trình bày tóm tắt về dạng còn lại, chính là một số kiến thức của Inferential Statistics hay còn gọi là thống kê suy luận.

Xem thêm: TỔNG QUAN VỀ STATISTICS: INFERENTIAL STATISTICS (THỐNG KÊ SUY LUẬN)
Giá trị khách hàng suốt vòng đời – Customer lifetime value
Một trong những khái niệm mà bất kể chuyên gia tiếp thị marketing hay chủ doanh nghiệp cần để ý là giá trị của khách hàng trong suốt vòng đời của họ. Điều này đặc biệt quan trọng khi đề ra chiến lượt tiếp thị marketing, định vị thương hiệu của mỗi nhãn hàng ( brand).Cụ thể hơn là khi đưa ra quyết định, tính toán về chi phí quảng cáo marketing cho mỗi khách hàng và ngân sách cho các chiến dịch tiếp thị marketing.

Xem thêm: Giá trị suốt vòng đời của khách hàng – Customer lifetime value
Để thu thập các thông tin bệnh nhân các nhà nghiên cứu phải sử dụng đến đơn vị petabyte. Mỗi petabyte dữ liệu tương đương với 1 triệu gigabyte. Công ty Express Scripts, có trụ sở tại St Louis, Missouri, Mỹ, đã thu thập được 22 petabyte dữ liệu y tế từ 83 triệu bệnh nhân, với số lượng dữ liệu này được chuyển đổi thành định dạng MP3, sẽ mất khoảng 44.000 năm để lắng nghe hết số lượng tệp nhạc này.

Xem thêm: Sự ảnh hưởng của “Big data” tới ngành Dược trong tương lai
Mỗi năm thiên tai như bão, lũ lụt, động đất gây ra thiệt hại rất lớn và nhiều sinh mạng. Các nhà khoa học không thể dự đoán khả năng xảy ra thảm họa và đề xuất đủ biện pháp phòng ngừa cho chính phủ nếu không có sự giúp đỡ của Big Data.

Xem thêm: Giải pháp Big data trong Quản Lý Thiên Tai
Hàn Quốc tự hào là nước có ngân hàng dữ liệu quốc gia về sức khoẻ của toàn bộ người dân. Hiện nay, Hàn Quốc đã bắt đầu nghiên cứu ứng dụng “Y học chính xác” hay “Y học cá thể” từ kho dữ liệu lớn về sức khoẻ của quốc gia. Tại quốc gia này, dữ liệu sức khoẻ của người dân được chia làm 6 nhóm dữ liệu.

Dữ liệu gen và SDOH là đầu vào của tình trạng sức khỏe, dữ liệu lâm sàng và PGHD là đầu ra của tình trạng sức khỏe
Xem thêm: Tìm hiểu các loại dữ liệu sức khoẻ của “Big data” tại Hàn Quốc
Thị trường E-commerce cùng với sự ra đời của những thành quả Cách mạng công nghiệp 4.0 như Artificial Intelligent (trí tuệ nhân tạo AI), Machine Learning (học máy) và đặc biệt là Big Data đã thay đổi một cách chóng mặt từ cách thức tiếp cận khách hàng cho đến cách thức quản lý, phân phối sản phẩm hàng hóa thông qua các webstie, app thông minh,..

Xem thêm: ỨNG DỤNG BIG DATA TRONG LĨNH VỰC E-COMMERCE (PHẦN 1)
Thương mại điện tử không chỉ tận hưởng những lợi ích của việc điều hành trực tuyến mà còn phải đối mặt với nhiều thách thức để đạt được các mục tiêu kinh doanh. Lý do là bởi các doanh nghiệp dù là nhỏ hay lớn, khi đã tham gia vào thị trường này đều cần đầu tư mạnh để cải tiến công nghệ.

Xem thêm: Giải pháp Big data cho Thương Mại Điện Tử
Tìm hiểu về mối quan hệ giữa Big Data và Cloud
Việc tận dụng và khai thác Big Data để phục vụ cho mục đích cải thiện hiệu quả hoạt động kinh doanh ở mỗi công ty ngày càng trở nên quan trọng và đem lại lợi ích cực kỳ to lớn. Big Data được xem là tài sản cực kỳ chủ lực không thuộc tài chính và nhân lực, nên tài nguyên này cũng cần được quản lý và sử dụng đúng cách.

Xem thêm: BIG DATA VÀ CLOUD – SỰ KẾT HỢP HOÀN HẢO
Nguồn tài nguyên giá trị nhất của thế giới hiện nay không còn là dầu mỏ, mà là kho dữ liệu số đang tăng lên với cấp độ lũy thừa mỗi ngày. Trong cuộc cách mạng công nghiệp 4.0, Big Data là một yếu tố đóng vai trò then chốt. Vậy Big Data thực chất là gì, và nó đang được ứng dụng như thế nào? Đối với nhiều người, đó là một thuật ngữ mơ hồ về hình ảnh của những hệ thống máy chủ khổng lồ, hoặc sẽ liên hệ đến việc nhận được các loại quảng cáo từ một nhà bán lẻ.

Xem thêm: Công nghệ Big Data và xu hướng ứng dụng
Business Intelligenc (BI) hay Data Analytics – phân tích dữ liệu từ lâu đã trở thành các công cụ hữu ích hỗ trợ các tổ chức, công ty trong quá trình hoạt động và phát triển. Ở bài viết lần này, sẽ giới thiệu đến các bạn các lợi ích của phân tích dữ liệu trong kinh doanh, nhưng trước tiên ta cùng phân biệt rõ 2 khái niệm được nêu ở trên mà nhiều người thường nhầm lẫn.

Xem thêm: LỢI ÍCH PHÂN TÍCH DỮ LIỆU TRONG KINH DOANH
Hội thảo Quốc tế về Thống kê Du lịch do Liên Hợp Quốc (UN) tổ chức vào cuối tháng 6, 2017 tại Manilla, Phillippines đã nhấn mạnh tới cách các thành phố sử dụng công nghệ Dữ liệu lớn (Big Data) để quản lý du lịch tốt hơn.

Xem thêm: Câu chuyện Dữ liệu lớn và ngành du lịch