Trang web cộng đồng lập trình viên Stack Overflow vừa đăng tải báo cáo khảo sát gần 90.000 nhà phát triển, với kết quả cho thấy tiền điện tử và công nghệ Blockchain dường như vẫn chưa phổ biến như suy nghĩ của nhiều người.
Chắc quý vị đã nghe quen từ BOT/ dự án BOT rồi phải không? Đặc biệt là BOT đường bộ,...
BOT (viết tắt của tiếng Anh: Build-Operate-Transfer, có nghĩa: Xây dựng - Vận hành - Chuyển giao). Chính phủ có thể kêu gọi các công ty tư nhân bỏ vốn xây dựng trước (build) thông qua đấu thầu, sau đó khai thác vận hành một thời gian (operate) và sau cùng là chuyển giao (transfer) lại cho nhà nước sở tại.

Triển khai công nghệ Blockchain Ethereum vào các doanh nghiệp nhằm thúc đẩy kinh doanh là một trong những xu hướng phát triển kinh tế, doanh nghiệp hiện nay.

Mới đây, một trong những “cá mập” lớn nhất của chương trình Shark Tank Việt Nam đã bỏ 1 triệu USD để mua 25% cổ phần một dự án chỉ đang ở trên giấy. Không ít người tỏ ra bất ngờ với quyết định đầu tư của Shark Hưng khi ông này bỏ ra số tiền khá lớn cho một startup mà cả ba shark còn lại đều đánh giá là thiếu khả thi.

Theo nguồn tin chính thức từ ChinaNews ngày 21/06, quan chức Trung Quốc đã bắt tay với ông lớn công nghệ Tencent để thành lập một Liên minh An ninh Blockchain mới.

DVMS đơn vị phát triển và ứng dụng công nghệ Blockchain trong tài chính (công nghệ tài chính fintech) hàng đầu tại Việt Nam với các hệ thống thanh toán, sàn giao dịch,… Nhắc đến DVMS là nhắc đến đội ngũ chuyên gia tư vấn và lập trình viên dày dặn kinh nghiệm về phân tích, đưa ra giải pháp tối ưu triển khai ứng dụng Blockchain trong tài chính của các tổ chức, doanh nghiệp, ngân hàng,…

Về tổng quan, mình thấy công nghệ và ứng dụng blockchain đi theo ba con đường lớn là:
1) Đồng Bitcoin và đồng tiền Internet
2) Nền tảng trao đổi hàng hoá số không cạnh tranh (a protocol for digital rival goods)
3) Blockchain như một cơ sở dữ phân tán cho ngành công nghiệp ngân hàng và tài chính.

Dữ liệu khách hàng hay Customer data được coi là tài sản, nguồn thông tin vô giá đối với mọi công ty thuộc nhiều lĩnh vực kinh doanh khác nhau. Việc triển khai các quy trình khai thác, dự án nghiên cứu, phân tích Customer data với mục đích tìm hiểu, nắm bắt mong muốn, nhu cầu thầm kín của khách hàng, và chuyển nó thành những giá trị cụ thể thông qua từng chiến lược, kế hoạch hoạt động chính là chìa khóa cạnh tranh của mỗi tổ chức ngày nay.

Xem thêm: TỔNG QUAN VỀ CUSTOMER DATA (P.1) – DỮ LIỆU KHÁCH HÀNG LÀ GÌ?
Một câu nói nổi tiếng của William Glasser, chuyên gia tâm thân học Mỹ:
Chúng ta học….
10% của những gì ta đọc được
20% của những gì ta nghe thấy
30% của những gì ta nhìn thấy
50% của những gì ta nghe và nhìn thấy
70% của những gì ta thảo luận
80% của những gì ta trải nghiệm
95% của những điều ta dạy người khác

Phân tích dự báo hay còn gọi Predictive analytics là một trong những phương pháp, kỹ thuật phân tích dữ liệu phổ biến và quan trọng nhất ngày nay. Đây là công cụ hữu ích để những nhà khoa học, chuyên gia hoạt động ở lĩnh vực Data science có cái nhìn chi tiết về đối tượng nghiên cứu, khám phá các mối liên hệ, đưa ra những phán đoán về đối tượng nghiên cứu ở tương lai chứ không chỉ dừng lại tại quá trình mô tả.

Xem thêm: TỔNG QUAN VỀ PREDICTIVE ANALYTICS (PHÂN TÍCH DỰ BÁO) (PHẦN 1)
Ứng dụng Big Data trong quản lý doanh thu
Ngành công nghiệp du lịch và lữ hành đang đối mặt với thách thức bán đúng sản phẩm đến đúng đối tượng khách hàng vào thời điểm chính xác và giữ đúng giá ở đúng kênh. Tất cả điều này đòi hỏi dữ liệu nội bộ lẫn bên ngoài. Dữ liệu nội bộ như kỳ vọng của khách hàng trong quá khứ, tỷ lệ hết vé, doanh thu phòng và tình trạng đặt vé hiện tại. Dữ liệu bên ngoài gồm sự kiện, thời tiết, những chuyến bay và những kỳ nghỉ.

Trở lại với chủ đề về Data mining, ở phần 1 đã giới thiệu đến các bạn về khái niệm, tầm quan trọng, lợi ích chính và thách thức của Data mining, tiếp tục với phần 2, sẽ đi vào phân tích các ứng dụng của Data mining trong các lĩnh vực một cách chi tiết hơn. Nhưng trước tiên chúng ta cùng điểm qua các loại thông tin và loại dữ liệu được thu thập và phân tích bằng các công cụ Data mining.

Xem thêm: TỔNG QUAN VỀ DATA MINING (P2): ỨNG DỤNG TRONG CÁC LĨNH VỰC
Hàn Quốc tự hào là nước có ngân hàng dữ liệu quốc gia về sức khoẻ của toàn bộ người dân. Hiện nay, Hàn Quốc đã bắt đầu nghiên cứu ứng dụng “Y học chính xác” hay “Y học cá thể” từ kho dữ liệu lớn về sức khoẻ của quốc gia. Tại quốc gia này, dữ liệu sức khoẻ của người dân được chia làm 6 nhóm dữ liệu.

Dữ liệu gen và SDOH là đầu vào của tình trạng sức khỏe, dữ liệu lâm sàng và PGHD là đầu ra của tình trạng sức khỏe
Xem thêm: Tìm hiểu các loại dữ liệu sức khoẻ của “Big data” tại Hàn Quốc
Trở lại với chủ đề về các xu hướng Big Data sẽ đi đầu trong năm 2019, ở phần 1, Big Data Uni đã đề cập về sự phát triển và thay đổi của Internet of Things (IOT), trí tuệ nhân tạo (Artificial Intelligence – AI), Machine Learning (ML) tác động như thế nào đến lĩnh vực Big Data, và một số dự báo về thị trường Big Data. Phần 2 bài viết, chúng tôi sẽ đề cập chi tiết về các xu hướng của những công cụ, cách thức hỗ trợ cho việc khai thác, tiếp cận Big Data, cùng với các vấn đề, thách thức mới trong lĩnh vực Big Data.

Xem thêm: TOP CÁC XU HƯỚNG BIG DATA SẼ ĐI ĐẦU TRONG NĂM 2019 (PHẦN 2)
Nếu các bạn có theo dõi các bài viết trước của Big Data Uni về Chatbot thì cũng đã biết sự cần thiết và tầm quan trọng của hệ thống trả lời tự động ứng dụng trong mọi lĩnh vực, với mục đích quản lý hiệu quả các hoạt động tạo dựng, duy trì mối quan hệ với khách hàng đồng thời thu hút họ mua sản phẩm và đăng ký sử dụng dịch vụ.

Phân tích dữ liệu dự đoán đang nhanh chóng trở thành động lực thúc đẩy tiếp thị hiện đại. Phân tích dữ liệu dự đoán là quá trình sử dụng dữ liệu lịch sử và hiện tại kết hợp với học máy để dự báo một số kết quả nhất định.

Xem thêm: 6 cách phân tích dữ liệu dự đoán đang định hình lại marketing
Để thu thập các thông tin bệnh nhân các nhà nghiên cứu phải sử dụng đến đơn vị petabyte. Mỗi petabyte dữ liệu tương đương với 1 triệu gigabyte. Công ty Express Scripts, có trụ sở tại St Louis, Missouri, Mỹ, đã thu thập được 22 petabyte dữ liệu y tế từ 83 triệu bệnh nhân, với số lượng dữ liệu này được chuyển đổi thành định dạng MP3, sẽ mất khoảng 44.000 năm để lắng nghe hết số lượng tệp nhạc này.

Xem thêm: Sự ảnh hưởng của “Big data” tới ngành Dược trong tương lai
Big Data có thể tạo ra các phương pháp tiếp cận dựa trên dữ liệu sáng tạo để dạy học sinh. Ở nhiều nước, việc ứng dụng Big Data trong trường học và cao đẳng đã dần trở nên phổ biến. Nhưng các nước đang phát triển cũng bắt đầu nghiên cứu để ứng dụng trong các hoạt động giảng dạy.

Ở phần 1 bài viết cùng chủ đề, đã giới thiệu các khái niệm về Data quality, Data quality management; lợi ích; tầm quan trọng; và các tiêu chuẩn, tiêu chí đánh giá chất lượng dữ liệu. Mặc dù nhiều công ty, tổ chức hiện nay đã nhận thức được sự cần thiết của các nhiệm vụ trong Data quality, nhưng họ vẫn phải đối mặt với nhiều thách thức, khó khăn khác nhau dẫn đến việc thiết lập, và triển khai các giải pháp thích hợp càng được quan tâm hơn bao giờ hết.

Xem thêm: TỔNG QUAN VỀ DATA QUALITY – CHẤT LƯỢNG DỮ LIỆU (P2)
Tầm quan trọng của Big Data (Dữ liệu lớn) và sự nhận thức về giá trị của nó giảm dần, nhiều công ty đầu tư vào lĩnh vực này nhưng không đem lại kỳ vọng, và kết quả tốt lợi. Nguyên nhân do nhu cầu và tính chất phức tạp của hệ thống công nghệ kỹ thuật phải xây dựng, bảo trì, chi phí lại cao, thiếu nguồn nhân lực có chuyên môn sâu, và kỹ năng về lĩnh vực Data Science hay Data Analytics,…

Khoa học dữ liệu đang dần khẳng định vai trò của mình trong việc cải thiện sức khỏe ngày nay. Big Data không chỉ được ứng dụng để xác định phương hướng điều trị mà giúp cải thiện quá trình chăm sóc sức khỏe. Từ khi Big Data được ứng dụng vào lĩnh vực chăm sóc sức khỏe, nó đã tạo nên nhiều tác động lớn trong việc giảm lãng phí tiền bạc và thời gian.

Trong ngành công nghiệp du lịch, dữ liệu lớn (hay còn gọi là Big data) là một trong những khái niệm quan trọng nhất để nắm bắt bởi hầu hết các doanh nghiệp khác đã sử dụng nó và gặt hái những phần thưởng.

Xem thêm: 5 bất ngờ mà dữ liệu lớn (Big Data) mang lại trong ngành du lịch
Một dự án lớn đang được tiến hành ở cả Anh và Mỹ nhằm thu thập thông tin thông qua một khối lượng lớn dữ liệu bệnh nhân. Đây là một dự án đầy hứa hẹn nhằm tối ưu hóa giá trị sử dụng thuốc, từ việc xác định sự kém tuân thủ trong điều trị để nâng cao chất lượng kê đơn.

Trở lại với chủ đề bài viết về Data mining, ở 2 phần trước đã giới thiệu dến các bạn khái niệm, tầm quan trọng, lợi ích, thách thức và đặc biệt là ứng dụng của Data mining trong nhiều lĩnh vực khác nhau. Phần cuối của chủ đề Data mining lần này, sẽ phân tích về các quy trình, kỹ thuật và thuật toán của Data mining, hay tìm hiểu làm cách Data mining khai thác giá trị, những thông tin hữu ích từ dữ liệu?

Xem thêm: TỔNG QUAN VỀ DATA MINING (P3): QUÁ TRÌNH VÀ PHƯƠNG PHÁP
Trở lại với chủ đề về các thuật toán cây quyết định Decision trees, như vậy qua các bài viết trước chúng ta đã tìm hiểu về tổng quan thuật toán cây quyết định là gì, làm quen với các dạng thuật toán CART (phân 2 nhánh) sử dụng công thức Goodness of Split, Gini Index và C4.5 (phân nhiều hơn 2 nhánh) sử dụng công thức Entropy kết hợp với Information gain.

Xem thêm: THUẬT TOÁN CÂY QUYẾT ĐỊNH (P.4): ƯU & KHUYẾT ĐIỂM, STOPPING & PRUNING METHOD
TTCT - College Board, tổ chức phi lợi nhuận đang phụ trách kỳ thi SAT, đã bán mỗi cái tên thí sinh kèm theo các thông tin liên quan với giá 47 cent (khoảng 11.000 đồng), gây ra những tranh cãi dữ dội về tuyển sinh đại học ở Mỹ.
![]() |
| Ảnh: Chronicle.com |
Xem thêm: Bán 47 cent /01 tên thí sinh thi SAT: Áp lực khoa cử kiểu Mỹ
Trở lại với chủ đề bài viết về thuật toán cây quyết định, ở bài viết trước đã giới thiệu đến các bạn tổng quan thế nào là Decision Tree, các công thức quan trọng để xác định cách phân nhánh tối ưu hay nói cách khác là đem lại kết quả phân loại (classification) chính xác dựa trên các thuộc tính dữ liệu và đặc biệt là thuật toán CART (classification and regression tree) sử dụng công thức “Goodness of Split”.

Xem thêm: THUẬT TOÁN CÂY QUYẾT ĐỊNH (P.2): CART (GINI INDEX)
Nếu các bạn hoạt động, làm việc trong lĩnh vực thương mại điện tử (E-commerce) hay digital marketing chắc biết đến Data management platform (DMP) còn được gọi là nền tảng quản lý dữ liệu tập trung.

Xem thêm: TẦM QUAN TRỌNG CỦA QUẢN LÝ DỮ LIỆU (DATA MANAGEMENT) (P1)
Hacker tối qua đã tung thông tin nghi là của hai triệu khách hàng từ một ngân hàng Việt Nam lên Raidforums, một website chuyên mua bán dữ liệu.
Các thông tin bị rò rỉ bao gồm tên đầy đủ, số chứng minh thư, số điện thoại, địa chỉ nhà, ngày tháng năm sinh, giới tính, email và nghề nghiệp.

Thông thường, khi khối lượng của một tập dữ liệu rất lớn và không thể quản lý được như các cơ sở dữ liệu truyền thống, thì chúng ta có thể gọi nó là Big Data. Đến lúc này, đám mây cung cấp cơ sở hạ tầng cần thiết cho việc tính toán dữ liệu lớn. Trong cuộc sống thực, nhiều tổ chức đang kết hợp hai công nghệ này để cải thiện hoạt động điều phối kinh doanh của mình.

Trong hệ thống ngân hàng, Big Data đã và đang được ứng dụng hiệu quả từ cách đây khá lâu. Big Data thể hiện vai trò không thể thay thế của mình trong mọi hoạt động của ngân hàng: từ thu tiền mặt đến quản lý tài chính. Các ứng dụng Big Data đã giúp giảm bớt rắc rối của khách hàng và tạo doanh thu cho các ngân hàng.

Big Data được ứng dụng trong rất nhiều lĩnh vực khác nhau như đã giới thiệu ở bài viết “Big Data – Tên gọi gợi lên khái niệm”. Bài viết tiếp theo dưới đây sẽ nói chi tiết hơn về các ứng dụng của Big data trong từng trường hợp cụ thể, và trong từng lĩnh vực đặc thù. Qua đó chúng ta sẽ thấy được tầm quan trọng trong việc thu thập và phân tích dữ liệu Big data.

1. Xu hướng nghề nghiệp trong tương lai
Hiện tại, chúng ta đang sống trong giai đoạn đầu của thời kỳ cách mạng công nghiệp lần thứ 4. Triết lý của cuộc cách mạng công nghiệp 4.0 là chúng ta phải sử dụng công nghệ thông tin để tăng được năng suất lao động, từ đó tiết kiệm được chi phí, mang lại lợi ích cho người tiêu dùng.

Xem thêm: CHUYÊN GIA PHÂN TÍCH DỮ LIỆU – SỰ THÀNH CÔNG TRONG TƯƠNG LAI
Bài chia sẻ của Ths.Bs Nguyễn Thành Danh (Danh Nguyen) - chuyên gia trong lĩnh vực quản lý y tế sau khi tham dự Hội thảo “Big Data trong cải tiến chất lượng y tế” được tổ chức tại Bệnh viện Việt Đức:

Xem thêm: Bùng nỗ digital healthcare, big data trong lĩnh vực y tế đang đến rất gần
Big data hay còn gọi là dữ liệu lớn, làm liên tưởng đến hình ảnh của hệ thống máy chủ khổng lồ. Nhưng Big data rộng và lớn hơn thế nhiều. Có 10 lĩnh vực chính trong đó dữ liệu hiện đang được sử dụng để tạo lợi thế tuyệt vời. Trong đó, dữ liệu có thể được đưa vào hầu hết mọi mục đích.
![]()
Sự xuất hiện ngày càng nhiều các sản phẩm công nghệ, kỹ thuật số thông minh tiên tiến gia tăng tối đa trải nghiệm khách hàng cho thấy mức độ phổ biến và ứng dụng rộng rãi của Machine Learning để phát triển các sản phẩm AI (Artificial Intelligence – trí tuệ nhân tạo). Cũng chính các thay đổi cực kỳ lớn và thịnh hành của môi trường công nghệ đã tạo cơ hội, mở ra cánh cửa để Big Data thúc đẩy kinh tế, hỗ trợ các công ty cải thiện hiệu quả kinh doanh của mình thông qua khai thác giá trị tiềm ẩn, thông tin hữu ích từ dữ liệu.

Xem thêm: TOP CÁC XU HƯỚNG BIG DATA SẼ ĐI ĐẦU TRONG NĂM 2019 (PHẦN 1)
Bạn có biết là những vị trí liên quan tới lĩnh vực khoa học dữ liệu (data science) và phân tích dữ liệu (data analysis) là khó tuyển nhất với một công ty không? Sự bùng nổ nhu cầu tìm kiếm các chuyên gia trong những lĩnh vực này mở ra hàng loạt nhu cầu và đồng thời, đẩy thị trường tuyển dụng vào tình trạng cung không đủ đáp ứng cầu.

Ở bài viết trước, đã giới thiệu đến các bạn khái niệm về Data management – quản lý dữ liệu – lịch sử ra đời, cũng như các thành phần, quy trình, chức năng có trong Data management. Trở lại với phần 2 “Tầm quan trọng của quản lý dữ liệu” , sẽ đi vào phân tích chi tiết các lợi ích chính, các thách thức mỗi tổ chức phải đối mặt khi triển khai, và liệt kê một số giải pháp thực tiễn sẽ hỗ trợ hiệu quả.

Xem thêm: TẦM QUAN TRỌNG CỦA QUẢN LÝ DỮ LIỆU (DATA MANAGEMENT) (P2)
Giới thiệu về K – nearest neighbor (KNN)
Ở các bài viết trước đã giới thiệu đến các bạn một cách tổng quan những chủ đề về Data mining (Khai phá dữ liệu), Predictive analytics (Phân tích dự báo), Statistics (Thống kê) bao gồm các khái niệm quan trọng, kỹ thuật phân tích và ứng dụng, lợi ích trong các lĩnh vực khác nhau.

Xem thêm: THUẬT TOÁN KNN VÀ VÍ DỤ ĐƠN GIẢN TRONG NGÀNH NGÂN HÀNG
Ở bài viết trước, đã giới thiệu đến các bạn thuật toán đầu tiên của mô hình Classification – mô hình phân loại – là thuật toán K nearest neighbor (KNN) với công thức cơ bản, và ví dụ đơn giản về ứng dụng của KNN trong ngành ngân hàng để hiểu hơn cách vận hành thuật toán.

Xem thêm: PHƯƠNG PHÁP ĐÁNH GIÁ MÔ HÌNH PHÂN LOẠI (CLASSIFICATION MODEL EVALUTATION)
Bộ dữ liệu này sẽ có ích cho các bạn xây dựng app và website tra cứu bài hát karaoke, tra cứu tác giả, tra cứu theo đầu hoặc đĩa karaoke...
* Mã số Karaoke Việt Nam Arirang 5 số, California 6 số, MusicCore, Sơn Ca Media và Việt KTV bao gồm cả tiếng Việt và tiếng Anh.
* Đầu karaoke Arirang cập nhật đến vol 64 mới nhất.
* Đầu karaoke MusicCore cập nhật đến vol 93 mới nhất.
* Đầu karaoke Sơn Ca Media (ACNOS) cập nhật đến vol 58 mới nhất.
* Đầu karaoke Việt KTV cập nhật đến vol 95 mới nhất.
* Đầu karaoke California cập nhật đến vol 20 mới nhất.
* Tra cứu theo Album Volume...
* Đặc biệt hỗ trợ đầy đủ lời bài hát.
Không có gì phải nghi ngờ, khi tất cả các doanh nghiệp hiện tại đều bị thôi thúc bởi lợi ích của việc khai thác dữ liệu (data) – thu thập, quản lý, xử lý, phân tích và diễn giải. Điều đó đòi hỏi mỗi tổ chức cần có một cơ sở dữ liệu (database) mới, tiên tiến để đáp ứng với môi trường kinh doanh hiện đại do các database cũ không thể bắt kịp tốc độ thay đổi về hình thức và khối lượng dữ liệu.

Murray Webb, 33 tuổi, tốt nghiệp thạc sĩ về thống kê ứng dụng (applied statistics) tại Trường Đại học Kennesaw (Atlanta, Mỹ), hiện kiếm được 160.000 đô la một năm với công việc chủ yếu là theo dõi phần thông tin về dữ liệu chăm sóc sức khỏe khách hàng cho các bệnh viện. Webb cho biết hằng tuần đều có người đại diện của các công ty cũng như các công ty chuyên cung cấp nguồn nhân lực tìm đến anh và đưa ra các lời mời làm việc như một nhà khoa học dữ liệu (data scientist).

Việc quyết định phương pháp đầu tư kinh doanh của công ty là một vấn đề khá phức tạp, đặc biệt khi bạn không chắc chắn những yếu tố nào cần dựa vào chỉ tiêu doanh thu, đánh giá của khách hàng, phản hồi nhóm hoặc thậm chí là cảm nhận từ chính bạn.

Xem thêm: Những điều cần biết về phân tích dữ liệu đối với kinh doanh
Nếu các bạn có theo dõi những bài viết của chúng tôi về Data management (quản lý dữ liệu) và Data quality (chất lượng dữ liệu), thì chắc cũng biết tầm quan trọng của quá trình Data security; sự ra đời của những bộ luật, điều luật về bảo mật thông tin, dữ liệu như GDPR tại châu Âu, luật An ninh Mạng ở nước ta; đặc biệt là xu hướng khách hàng đang ngày càng quan tâm hơn về tính minh bạch trong việc sử dụng, và khả năng bảo vệ nguồn dữ liệu, thông tin cá nhân của họ tại các công ty.
KHI MỘT CHUYÊN GIA PHÂN TÍCH DỮ LIỆU NHẬN ĐƯỢC YÊU CẦU TỪ CÁC PHÒNG BAN, BỘ PHẬN HAY LÃNH ĐẠO CÔNG TY, CHUYÊN GIA ẤY CÓ THỂ NHẢY VÀO PHÂN TÍCH NGHIÊN CỨU NGAY VẤN ĐỀ. NGƯỜI LÀM PHÂN TÍCH DỮ LIỆU SẼ MONG MUỐN TỪ YÊU CẦU ĐƠN GIẢN BAN ĐẦU SẼ TÌM RA PHÁT HIỆN TUYỆT VỜI, ĐƯA RA ĐƯỢC CÁC ĐỀ XUẤT HAY NHẤT ĐỂ ÁP DỤNG CHO CÔNG TY. NHƯNG THỰC TẾ THƯỜNG KHÔNG THUẬN LỢI NHƯ VẬY.

Xem thêm: Các bước chuẩn bị cho một dự án phân tích dữ liệu thành công!
Trở lại với chủ đề về thống kê, ở phần trước chúng tôi đã giới thiệu đến các bạn các khái niệm về thống kê cũng như lợi ích và ứng dụng của nó, tiếp theo ở phần này, chúng tôi sẽ đề cập đến một mảng kiến thức quan trọng khác đó chính Descriptive statistics (thống kê mô tả)

Xem thêm: TỔNG QUAN VỀ STATISTICS: DESCRIPTIVE STATISTICS (THỐNG KÊ MÔ TẢ)
Business Intelligenc (BI) hay Data Analytics – phân tích dữ liệu từ lâu đã trở thành các công cụ hữu ích hỗ trợ các tổ chức, công ty trong quá trình hoạt động và phát triển. Ở bài viết lần này, sẽ giới thiệu đến các bạn các lợi ích của phân tích dữ liệu trong kinh doanh, nhưng trước tiên ta cùng phân biệt rõ 2 khái niệm được nêu ở trên mà nhiều người thường nhầm lẫn.

Dịch vụ dữ liệu chính xác, tin cậy , đúng mục tiêu , đúng nhu cầu cho lĩnh vực Y tế, Dược, Thực phẩm chức năng, Chăm Sóc Sức khỏe...

Xem thêm: Dịch vụ và giải pháp Big Data cho lĩnh vực Y - Dược - Chăm Sóc Sức Khỏe
Thương mại điện tử không chỉ tận hưởng những lợi ích của việc điều hành trực tuyến mà còn phải đối mặt với nhiều thách thức để đạt được các mục tiêu kinh doanh. Lý do là bởi các doanh nghiệp dù là nhỏ hay lớn, khi đã tham gia vào thị trường này đều cần đầu tư mạnh để cải tiến công nghệ.

Ở 2 bài viết trước đã giới thiệu đến các bạn thuật toán Classification đầu tiên là KNN (K – nearest neighbor) và một số phương pháp đánh giá mô hình phân loại như Hold out, Cross validation, hay Confusion matrix, Lift, Gain chart, ROC/ AUC. Trở lại với chủ đề về những thuật toán phân loại trong Data mining, lần này chúng tôi và các bạn sẽ tìm hiểu về Decision Tree, thuật toán có thể nói là “nổi tiếng”, “phổ biến” mà bất kỳ ai hoạt động và làm việc trong lĩnh vực khoa học dữ liệu, hoặc phân tích dữ liệu đều phải biết đến.

Xem thêm: THUẬT TOÁN CÂY QUYẾT ĐỊNH (P.1) : CLASSIFICATION & REGRESSION TREE (CART)
Như vậy chúng ta đã cùng nhau đi qua 4 phần của series bài viết về thuật toán Decision trees hay còn gọi là thuật toán cây quyết định. Chúng ta đã làm quen với định nghĩa tổng quát, các dạng cây quyết định bao gồm phân 2 nhánh – CART, và nhiều nhánh C4.5 sử dụng các công thức Goodness of Split, Gini Index, Entropy kết hợp với Information Gain, hay Gain Ratio để xây dựng mô hình áp dụng cho biến mục tiêu là biến định tính, và chúng ta cũng tiếp cận qua một số cách thức để tăng độ hiệu quả của mô hình, tránh trường hợp Overfitting hay Underfitting như Stopping rule và Pruning method, và nhìn lại những ưu điểm, khuyết điểm một cách tổng thể về Decision Trees.

Xem thêm: THUẬT TOÁN CÂY QUYẾT ĐỊNH (P.5) REGRESSION TREE VÀ DECISION RULES
Đây là một trong những lĩnh vực sử dụng Big data công khai và lớn nhất hiện nay. Big data được sử dụng để hiểu rõ hơn về khách hàng cũng như hành vi và sở thích của họ. Các công ty rất muốn mở rộng bộ dữ liệu truyền thông của họ, dữ liệu truyền thông xã hội, nhật ký trình duyệt cũng như phân tích văn bản, dữ liệu cảm biến. Để có được bức tranh đầy đủ hơn về khách hàng của họ. Mục tiêu lớn hơn, trong nhiều trường hợp, là tạo ra các mô hình dự đoán.

- Giá trị suốt vòng đời của khách hàng – Customer lifetime value
- SỰ “BÙNG NỔ” CỦA SOCIAL MEDIA VÀ XU HƯỚNG MARKETING MỚI
- Hiểu về thế giới từ dữ liệu như thế nào?
- Hiểu, Học và ứng dụng Big Data như thế nào?
- Từ BIG DATA đến cá nhân hóa trong lĩnh vực du lịch
- Giải pháp Big data trong Quản Lý Thiên Tai
- Câu chuyện Dữ liệu lớn và ngành du lịch
- CÔNG TY ĐỊNH HƯỚNG DỮ LIỆU (DATA – DRIVEN ENTERPRISE) (PHẦN 2)
- Chọn nghề phân tích dữ liệu?
- Dịch vụ và giải pháp Big Data cho lĩnh vực du lịch
- THUẬT TOÁN CÂY QUYẾT ĐỊNH (P.3): C4.5 (ENTROPY)
- TỔNG QUAN VỀ STATISTICS: INFERENTIAL STATISTICS (THỐNG KÊ SUY LUẬN)










